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Abstract

Benchmark datasets for digital dermatology un-
wittingly contain inaccuracies that reduce trust
in model performance estimates. We propose
a resource-efficient data-cleaning protocol to
identify issues that escaped previous curation.
The protocol leverages an existing algorithmic
cleaning strategy and is followed by a confirma-
tion process terminated by an intuitive stop-
ping criterion. Based on confirmation by mul-
tiple dermatologists, we remove irrelevant sam-
ples and near duplicates and estimate the per-
centage of label errors in six dermatology im-
age datasets for model evaluation promoted by
the International Skin Imaging Collaboration.
Along with this paper, we publish revised file
lists for each dataset which should be used for
model evaluation.1 Our work paves the way
for more trustworthy performance assessment
in digital dermatology.
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1. https://github.com/Digital-Dermatology/
SelfClean-Revised-Benchmarks

1. Introduction

Benchmark datasets serve as proxies to evaluate the
utility of machine learning (ML) models in real-life
tasks, e.g. to estimate clinical utility in the medical
domain. In particular, the scientific community ac-
tively promotes the creation, distribution, and adop-
tion of public benchmark datasets to enhance compa-
rability and reproducibility. New benchmark datasets
are typically introduced by a work that observes their
specific merits or by a competition that addresses
the lack of satisfactory solutions for a practically
relevant problem. After their introduction, however,
they are often used without further critical investiga-
tion. While this fulfills the purpose of fair comparison
among different methods, the degree to which perfor-
mance reflects real utility remains an open question.
Indeed, concerns have been raised regarding the qual-
ity of existing benchmarks (Groh, 2022). For exam-
ple, Northcutt et al. (2021b) identified label errors
across domains and argued that noise in benchmark
datasets can obscure the true model performance.
Consequently, questions arise regarding the validity
of leaderboards and the effectiveness of increasingly
sophisticated approaches.

Dermatology is no exception in this respect. For in-
stance, Tschandl et al. (2020, 2019) found the amount
of noise present in annotations to be a limiting fac-
tor, which prompted the authors to repeat the man-
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Label Errors
Wrongly annotated samples, 
e.g. images showing a malignant 
lesion that is benign

Near Duplicates
Multiple views of the same object, 
e.g. images showing the same lesion 
at different magnifications

I r relevant Samples
Invalid for the considered task, 
e.g. images that are unrelated, to 
blurry, or out of focus

Derm7pt

Seborrheic 
Keratosis

Melanoma

MED-NODE SD-128

Darier-White 
Disease

PAD-UFES-20

Basal Cell 
Carcinoma

DDI

Malignant

Figure 1: Examples of data quality issues found in the six considered evaluation datasets for dermatology.
PH2 is not shown, as it was found to contain no issues.

ual segmentation process. Furthermore, some popular
dermatology datasets such as Fitzpatrick17k (Groh
et al., 2021) and SD-128/192/256 (Sun et al., 2016)
have been obtained by crawling atlases or collect-
ing user inputs. These strategies are inherently prone
to errors, which leads to relatively high noise levels
(Sambasivan et al., 2021). As an alternative for more
reliable evaluation, there has been a surge in the cre-
ation of small datasets designed for evaluation pur-
poses. These datasets typically prioritize the elimi-
nation of biases, aim to represent data diversity, and
undergo extensive manual curation. They are thus
generally assumed to be of high quality (Daneshjou
et al., 2022, 2023). Nevertheless, as they contain a
fairly limited number of samples, even few errors or
inaccuracies can significantly impact evaluation re-
sults. Moreover, besides public datasets, clinics fre-
quently maintain private data collections that are in-
strumental for clinical research and for validating ML
applications in local settings. These collections can
often not be shared or even leave premises due to
privacy constraints. The absence of truly standard-

ized quality checks means that validation is left to
the discretion of data owners, while the rest of the
community (including reviewers) must rely on their
diligence.

Recently, data-centric artificial intelligence (DCAI)
initiatives have increased attention to data quality
and produced modern tools for automatic analy-
sis of image collections. Prominent examples include
CleanLab2, a toolbox that finds candidate label er-
rors using confident learning (Northcutt et al., 2021a)
but can also identify several other issues in image col-
lections ranging from out-of-distribution samples to
extreme aspect ratios. FastDup3 is a public library
targeted at finding duplicates in large computer vi-
sion datasets, with additional features to identify sub-
clusters, label errors, and other types of noise.

Very recently, SelfClean (Gröger et al., 2023) was
introduced to investigate irrelevant samples, near du-
plicates, and label errors within the context of the
dataset without relying on additional external data.

2. https://github.com/cleanlab/cleanvision
3. https://github.com/visual-layer/fastdup
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Its main difference from other existing approaches
is that it reformulates dataset cleaning as a set of
ranking problems instead of a classification problem.
These three issue types can lead to undesirable con-
sequences when they affect evaluation sets. Irrelevant
samples are unsuitable to carry out valid tasks in the
dataset context, and their presence introduces noise
into the evaluation metrics. Near duplicates are dif-
ferent views of the same object, which can create
arbitrary re-weighting within the evaluation set or
leak information when split over training and eval-
uation set. Label errors, which encompass wrongly
annotated samples, lead to inaccurate evaluations.
Throughout the remainder of this paper, we use the
term “noise” to encompass all data quality issues, in-
cluding these three main categories. Examples of each
noise type in the context of dermatology are shown
in Figure 1.

Contributions. This paper introduces a novel
data-cleaning protocol that combines an existing
method to find issues with an interpretable stop-
ping criterion for efficient annotation (Section 4.1).
The protocol is used to quantify the amount and
type of noise in six popular dermatology evaluation
datasets, which are then improved by rectifying is-
sues when appropriate (Section 4.2). We then assess
the influence of this data-cleaning effort on model
performance estimates (Section 4.3). While focusing
on specific datasets, we provide an effective, stream-
lined procedure to clean up image collections across
the medical domain (Section 4.4), which is applica-
ble even when data cannot leave private premises.
Furthermore, we investigate how non-expert annota-
tors compare with domain experts in specific data
quality confirmation tasks and find hints that near-
duplicate detection does not require domain expertise
(Section 4.5). Finally, we deliver the cleaned, more re-
liable benchmarks as ready-to-use file lists, improving
the assessment of progress in the field.

2. Related work

The performance and ability of deep neural networks
to make accurate predictions and generalize effec-
tively relies heavily on the quality and quantity of
available data (Rolnick et al., 2018). However, real-
world datasets frequently suffer from data quality is-
sues. In response to this challenge, a vast body of
literature exists on mitigating the impact of noise
during training (Karimi et al., 2020; Natarajan et al.,

2013; Song et al., 2022). This can be achieved through
various means, such as adapting architectures, utiliz-
ing specialized loss functions, or modifying training
procedures. However, these methods do not address
the noise in the evaluation data, which affects the
scores used to judge the model performance. On the
one hand, there are formidable efforts to curate eval-
uation datasets to very high-quality standards man-
ually (Daneshjou et al., 2022; Irvin et al., 2019). This
manual curation is challenging because humans are
prone to errors, and it is already highly resource-
intensive for mid-scale datasets (Pandey et al., 2022).
On the other hand, methods that automatically de-
tect errors (Cheng et al., 2021; Northcutt et al.,
2021a) and correct them either algorithmically or
with reduced human effort (Northcutt et al., 2021b)
are applicable to evaluation as well as training sets.
Automatic detection approaches focus either on cus-
tomized training processes to first learn with noisy
supervision and then make decisions based on the
output (Northcutt et al., 2021a) or on directly using
features learned without labels for decision making
(Gröger et al., 2023).

Recently, several works investigated and produced
cleaned versions of existing benchmarks for gen-
eral computer vision (Northcutt et al., 2021b), in-
tent detection (Ying and Thomas, 2022), and au-
tomated electrocardiogram interpretation (Doggart
et al., 2022). These efforts mostly use automated
noise detection frameworks such as confident learning
(Northcutt et al., 2021a) followed by human confir-
mation. In the domain of dermatology, Cassidy et al.
(2022) analyzed the prevalence of near duplicates in
the International Skin Imaging Collaboration (ISIC)
datasets and provided practical recommendations on
their usage for reliable evaluation. However, most of
these endeavors primarily focus on a single noise type,
while different kinds of data quality issues may be
present at once in a dataset, with significant impact
for machine learning.

3. Methodology

3.1. Problem statement

Data cleaning refers to the process of identifying, cor-
recting, and removing errors, inconsistencies, and in-
accuracies from raw data collections to enhance their
reliability and usability (Li et al., 2021). It involves
a number of tasks aimed at improving data quality,
such as addressing outliers, duplicate records, and
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many other modality-specific issues. The ultimate
goal of data cleaning is to prepare datasets for anal-
ysis and decision-making, ensuring that the insights
drawn from the data are accurate and trustworthy.
In this paper, we focus on three data quality issues,
which we empirically found to be frequent in medical
imaging benchmark datasets and, at the same time,
difficult to detect. These are irrelevant samples, near
duplicates, and label errors.
The primary emphasis of this work lies in the de-

tection and treatment of these quality issues rather
than in the comparison of existing detection strate-
gies. Thus, we rely on a single cleaning tool in com-
bination with expert confirmation.

3.2. Ranking candidate data quality issues

We leverage SelfClean (Gröger et al., 2023) to iden-
tify potential data quality issues in dermatology
benchmark datasets. SelfClean is a holistic data-
cleaning framework based on recent advances in self-
supervised learning (SSL) (Ozbulak et al., 2023) that
targets the detection of irrelevant samples, near du-
plicates, and label errors. It achieves remarkable per-
formance on small- to medium-size datasets without
leveraging labels or additional data sources.
SelfClean first uses self-supervised pre-training on

a noisy dataset to obtain an encoder that maps
samples onto a dataset-specific latent space. The
method can be applied in combination with any
SSL approach, but the original work compared
SimCLR (Chen et al., 2020) and DINO (Caron et al.,
2021) and found the latter to have better perfor-
mance. We refer to Gröger et al. (2023) for ablations
on the influence of different pre-training strategies.
The dataset-specific latent space is then exploited
to find data quality issues using simple distance-
based criteria. Specifically, single-linkage agglomera-
tive clustering is used to find irrelevant samples, pair-
wise distances are computed to identify near dupli-
cates, and the intra-/extra- class distance ratio is used
to detect label errors. For each noise type, SelfClean
yields a sorted list of all samples (or pairs thereof),
where items appearing earlier in the sequence are
more likely to manifest data quality issues.

3.3. Confirming data quality issues

We present the rankings obtained with SelfClean for
each dataset and noise type to human annotators for
confirmation. Note that this manual cleaning, which
involves human feedback, is recommended in Gröger

et al. (2023) for evaluation sets, where it is crucial
to control potential score bias that comes from using
similar methods for cleaning and performing the final
classification task. We rely on annotations by three
practicing domain experts (referred to as E1, E2, and
E3), of which E3 is a board-certified dermatologist,
and leverage the same verification tool developed in
Gröger et al. (2023). Experts select a dataset and
data quality issue type, then answer the binary ques-
tions reported in Appendix E.

Comprehensive verification of potential issues for
all samples N in a dataset presents a challenge due to
the high effort required and may be ultimately detri-
mental due to natural limitations in the attention
span of annotators. This is exacerbated in the case
of near duplicates, where a binary choice should be
taken for each of the N(N−1)/2 possible pairs of im-
ages. Thus, there is a trade-off between the resources
allocated to annotation and the number of data qual-
ity issues that remain unverified. To solve this issue,
we propose a conservative and intuitive stopping cri-
terion to terminate the annotation process before the
dataset is exhaustively covered. Specifically, we pro-
ceed along the SelfClean ranking and stop the anno-
tation process after receiving nclean consecutive neg-
ative responses. We set nclean by requesting that the
probability of observing the sequence of negative an-
notations as a result of chance be lower than pchance,
where the probability for each sample to be a data
quality issue is p+ (or less). Thus the probability
of observing a sequence of nclean clean samples in
a row by chance is pseq = (1 − p+)

nclean . The ob-
servation of such a sequence is therefore significant
with 95% confidence when pseq ≤ 5% = pchance,
corresponding to nclean ≥ ln pchance/ ln(1 − p+). For
simplicity, p+ is set to a fixed typical value and is
not estimated from the sequence. Its dependence on
the ranking is ignored, and no correction for the
observation of multiple sequences is applied. This
yields nclean = ⌊ln(pchance)/ ln(1 − p+)⌋, where we
set pchance = p+ = 0.05, resulting in nclean = 58.

3.4. Cleaning data quality issues

After the confirmation process, we conservatively re-
quire unanimous expert agreement to identify an is-
sue. Specifically, a sample is considered noise only if
all experts flag it as such. We then produce cleaned
benchmark datasets by discarding confirmed irrele-
vant samples and randomly removing a sample for
each confirmed pair of near duplicates. We note that
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this treatment of near-duplicates is appropriate only
when there are at most two images of the same ob-
ject and different views are approximately equivalent,
which we found to be the case for the considered
datasets. The updated file lists include the file names
of valid images from the original dataset, excluding
irrelevant and near-duplicate samples. Furthermore,
we estimate the percentage of label errors from ex-
pert confirmations. Label errors are not corrected as
this would unfairly favor models similar to the Self-
Clean encoder. In fact, since only the first part of the
sequence is proposed for verification, samples which
would be incorrectly classified by nearest neighbors
on SelfClean representations are more likely to be re-
moved from the dataset, which would positively bias
the score. Instead, the estimated prevalence of label
errors is reported. When models achieve an error rate
comparable to this estimate or lower, there is an in-
dication that performance may be limited by label
quality and further optimization could lead to over-
fitting. Moreover, some of the datasets obtain their
labels as a result of pathological confirmation. Thus,
correction on the basis of visual appearance would be
inappropriate.

3.5. Evaluation benchmark dataset selection

Six popular small-scale dermatology datasets are se-
lected for cleaning from a list of public sources for
skin image analysis research by the ISIC community4.
These can be considered evaluation datasets as their
size makes them poorly suited for training, and they
usually cover a specific use case of interest. Public
datasets without licenses fall under the public domain
mark.

MED-NODE (Giotis et al., 2015) features 170
clinical images for skin cancer detection by the
University Medical Center Groningen, Nether-
lands (CC BY 4.0). The images are categorized
into melanoma and naevus.

PH2 (Mendonça et al., 2013) features 200 der-
moscopy images for melanocytic lesion classifica-
tion by the Hospital Pedro Hispano in Matosin-
hos, Portugal. The images are categorized into
common nevi, atypical nevi, and melanomas.

DDI (Daneshjou et al., 2022) features 656 clini-
cal images for skin cancer detection and rare dis-
ease classification by the Stanford Clinics (Stan-

4. https://workshop2023.isic-archive.com

ford’s University dataset research agreement).
The images are categorized into benign or ma-
lignant lesions and 78 diseases.

Derm7pt (Kawahara et al., 2019) features
2,022 dermoscopy and clinical images for skin
condition diagnosis (CC BY-NC-SA 4.0). The
images are categorized into 16 diagnoses.

PAD-UFES-20 (Pacheco et al., 2020) features
2,298 clinical images for skin condition diagnosis
(CC BY 4.0). The images are categorized into
six disease diagnoses.

SD-128 (Sun et al., 2016) features 5,619 clinical
images for skin condition diagnosis collected
from DermQuest. The images are categorized
into 123 diseases.

3.6. Implementation details

We train a randomly initialized vision transformer
tiny encoder with a patch size of 16×16 using DINO
on each considered dataset separately. The latent rep-
resentation is given by the class token output from the
encoder’s last layer, which has dimension 192. SSL
pre-training was performed for 500 epochs. Similar
to Gröger et al. (2023), we use stronger data aug-
mentation than the original DINO strategy (Caron
et al., 2021) to make the self-supervised task suffi-
ciently complex. All images are resized to 224 × 224
pixels and normalized using mean and standard devi-
ation of ImageNet (Deng et al., 2009). Our implemen-
tation is based on PyTorch (Paszke et al., 2019) and
the official SelfClean repository (Gröger et al., 2023).
All experiments are performed on an Nvidia DGX-1
server.

4. Results

4.1. Expert inter-annotator agreement

Figure 2 presents an analysis of the inter-annotator
agreement of the experts for each dataset and noise
type. In the left panel, the overall agreement for
all three expert annotators is measured with Krip-
pendorff’s alpha, which naturally allows for differ-
ent sets of labeled samples. In the right panel, each
pair of expert annotators is compared using Cohen’s
kappa, computed on all samples labeled by both. Er-
ror bars represent 95% confidence intervals obtained
with 1,000 bootstrap repetitions on the annotated
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Figure 2: Inter-annotator agreement as Krippendorff’s alpha among all expert annotators (left) and Cohen’s
kappa for all expert annotator pairs (right). Markers identify the six selected evaluation datasets,
error bars are 95% confidence intervals obtained by bootstrapping annotated samples, and the
background color indicates the degree of agreement (Regier et al., 2013).

samples. Background colors indicate the degree of
agreement according to the ranges defined in Regier
et al. (2013), i.e. good (>0.4), questionable (0.2–0.4),
and unacceptable (<0.20).

We observe that the agreement for the consid-
ered noise types is vastly different. Expert annota-
tors largely agree on near duplicates across most
datasets. On the other hand, agreement is lower for
label errors and irrelevant samples. This behavior is
expected since these two tasks are not direct image
comparisons and involve applying dermatological cri-
teria outside of a clinical context. As a consequence,
complexity and subjectivity are higher, especially for
rare cases (Daneshjou et al., 2022). Furthermore, our
findings align with those of Daneshjou et al. (2022),
which showed that even board-certified dermatolo-
gists had difficulties identifying whether lesions were
benign or malignant purely visually, underscoring the
importance of labeling with pathology results. The
agreement is significantly lower for datasets contain-
ing dermoscopy images (PH2 and Derm7pt) than for
those with clinical images, an interesting finding as
dermoscopy is generally perceived to improve diag-
nostic accuracy (Kittler et al., 2002). Possible root
causes are magnification and standardization, which
deprive expert annotators of additional informative
visual features that are especially relevant for harder
cases.

4.2. Identified data quality issues

Table 1 quantifies the data quality issues found in
each dataset for each noise type after aggregating an-
notations using majority voting or unanimous agree-
ment. Since we require the agreement of multiple ex-
perts, we expect the subjectivity of annotations to be
reduced for confirmed problems. In other words, low
agreement leads to fewer issues compared to those
reported by individual annotators. This is apparent
for the two dermoscopy datasets, PH2 and Derm7pt.
Even with the strictest criterion of unanimous agree-
ment, we observe that the number of near dupli-
cates found increases with dataset size up to 2–3% for
these already highly curated datasets, indicating that
avoiding this type of error becomes more difficult. We
also identify up to 2% of irrelevant samples and es-
timate label errors to be approximately 1% for DDI
and MED-NODE, potentially related to edge cases.
PH2 is the only dataset where we do not find any
data quality issues. Detected issues can be visually
inspected in Appendix B.

Figure 9 in Appendix C shows the number of items
inspected by the experts for each dataset. For most
of the noise types, datasets, and experts, the stop-
ping criterion terminated the annotation process (see
Section 3.3). On average, this speeds up the anno-
tation process by a factor of 14 for irrelevant sam-
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Table 1: Expert-confirmed data quality issues found in six dermatology benchmarks, for all three noise types
and two aggregation strategies.

Majority Voting Unanimous Agreement

Irrelevant Near Label Irrelevant Near Label
Dataset Size Samples Duplicates Errors Samples Duplicates Errors

MED-NODE 170 8 (4.7%) 1 (0.6%) 15 (8.8%) 3 (1.8%) 1 (0.6%) 2 (1.2%)
PH2 200 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
DDI 656 8 (1.2%) 6 (0.9%) 43 (6.6%) 3 (0.5%) 6 (0.9%) 8 (1.2%)
Derm7pt 2,022 1 (0.1%) 9 (0.5%) 15 (0.7%) 1 (0.1%) 9 (0.5%) 2 (0.1%)
PAD-UFES-20 2,298 12 (0.5%) 66 (2.9%) 8 (0.3%) 2 (0.1%) 56 (2.4%) 3 (0.1%)
SD-128 5,619 4 (0.1%) 167 (3.0%) 12 (0.2%) 3 (0.1%) 156 (2.8%) 4 (0.1%)

ples, 32,520 for near duplicates, and 12 for label er-
rors compared to exhaustive annotation. Table 4 in
Appendix C gives a breakdown of these figures for
each dataset and noise type. The remarkable speed-
up factor for near duplicates illustrates how resource-
intensive such detection is and how it can be signifi-
cantly reduced with the proposed data-cleaning pro-
tocol. To showcase the robustness of the approach,
we investigate the dependence of the number of de-
tected samples on the two parameters p+ and pchance
of the stopping criterion in Appendix D. Results indi-
cate that the proposed criterion is largely insensitive
to the choice of parameters for most issue types and
datasets.

4.3. Influence of cleaning data quality issues

Table 2 showcases the impact of data cleaning on
the performance of two prominent open-source binary
classification models designed for skin cancer detec-
tion: DeepDerm (Esteva et al., 2017) and HAM10000
(Tschandl et al., 2018). These models are pre-trained
on external data, and we evaluate them on all con-
sidered datasets before and after cleaning. We then
report the performance difference in terms of area
under the ROC curve (AUROC), average precision
(AP), and area under the precision-recall-gain curve
(AUPRG). Note that the cleaning process only in-
volves the removal of irrelevant samples and near du-
plicates (see Section 3.4). Despite the limited number
of issues found within the original datasets, their in-
fluence on model performance estimates remains ev-
ident. The performance difference observed for the
DDI dataset in DeepDerm is particularly notewor-
thy, as there is a significant performance reduction

of −1.0%, −1.4%, and −3.6% in AUROC, AP, and
AUPRG, respectively. For MED-NODE, both mod-
els observe a noteworthy reduction in AUPRG. Ad-
ditionally for SD-128 there is a mild but significant
difference for DeepDerm in AUROC and AP and in
AUROC for HAM10000. Overall, these findings un-
derscore the significance of data cleaning and its in-
fluence on the assessment and selection of models.

4.4. Quality of candidate rankings

Table 3 in Appendix C compares the candidate rank-
ings produced by SelfClean and the unanimous agree-
ment of expert annotators for samples annotated by
all three. Performance is measured in terms of AU-
ROC, AP, and AUPRG (Flach and Kull, 2015). Re-
sults for irrelevant samples indicate that the rank-
ing is well-aligned with expert annotations except
for SD-128, where scores indicate no advantage. The
agreement of near duplicates suggested by SelfClean
with expert annotations is the highest among the
three noise types, as indicated by all scores always
well above the baselines. Label errors seem the most
difficult for the chosen data-cleaning support strat-
egy, with scores at baseline level for Derm7pt and
marginal gain for SD-128. The poor performance that
we observe in a limited number of cases could be
due to the intrinsic difficulty of the task, but also to
the small support of problematic examples in already
highly curated evaluation datasets. Overall there is
good correspondence in our experiments between the
SelfClean rankings and expert-confirmed data qual-
ity issues. However, we also see that relying solely on
rankings can lead to suboptimal cleaning, reinforcing
the necessity for human confirmation.
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Table 2: Difference in performance after cleaning evaluation datasets for two open-source binary classification
models for skin cancer detection trained on external data. Performance is compared in terms of
AUROC, AP, and AUPRG. PH2 is not evaluated, as it was found to contain no issues. We report
the median and the 95% confidence interval in brackets. Additionally ∗ represents significance when
zero is strictly outside the range, and ◦ denotes borderline cases when a boundary is exactly zero.

DeepDerm HAM10000

Difference Difference Difference Difference Difference Difference
Dataset AUROC (%) AP (%) AUPRG (%) AUROC (%) AP (%) AUPRG (%)

MED-NODE −0.3 [−0.7,+0.1] −0.1 [−0.9,+0.4] −0.9 [−2.5, 0.0]◦ −0.2 [−0.8,+0.2] −0.0 [−0.9,+0.6] −1.1 [−3.1,−0.0]∗

DDI −1.0 [−1.9,−0.2]∗ −1.4 [−3.4,−0.2]∗ −3.6 [−7.9,−0.7]∗ +0.1 [−0.9,+1.0] −0.6 [−2.6,+0.3] +0.7 [−2.0,+3.9]

Derm7pt +0.1 [−0.1,+0.4] −0.1 [−0.4, 0.0]◦ +0.4 [−0.1,+1.0] +0.0 [−0.2,+0.3] −0.1 [−0.5,+0.2] +0.4 [−0.3,+1.1]

PAD-UFES-20 +0.1 [−0.4,+0.7] +0.1 [−0.1,+0.5] −0.3 [−1.2,+0.6] +0.1 [−0.4,+0.7] +0.1 [−0.2,+0.5] +0.1 [−0.7,+0.8]

SD-128 −0.1 [−0.3,−0.0]∗ +0.3 [+0.0,+0.5]∗ −0.1 [−0.4,+0.3] −0.2 [−0.6,−0.0]∗ +0.1 [−0.0,+0.1] −0.9 [−2.1,+0.2]

4.5. Non-expert confirmation

The proposed protocol has been shown to speed
up the cleaning process significantly. However medi-
cal expert annotations are very expensive to obtain.
Thus, here we want to test if in-depth medical knowl-
edge is needed for all three confirmation tasks, as our
protocol would then yield a speed-up and simultane-
ously reduce costs. Here we recruited three laypersons
who repeated the annotation tasks for MED-NODE,
PH2, and SD-128. Results are reported in Figure 3.
The upper panels show the pair-wise Cohen kappas
for each expert-expert and expert-lay pair. The lower
panels show the paired differences between the agree-
ment of every expert and layperson with the same
reference expert. We test for statistical significance
of two-expert pairs having a better agreement than
expert-lay pairs with a one-sided paired permutation
test, which solely relies on the sign of the differences.
The results indicate no sizeable difference between
experts and laypersons for irrelevant sample detec-
tion except SD-128, which might be a consequence of
poor expert agreement. Although experts agree bet-
ter among each other for near duplicates on MED-
NODE and PH2, this is not particularly noteworthy
as the support is only a few samples. On the other
hand, for SD-128, experts and laypersons can iden-
tify near-duplicate samples in the hundreds without a
significant performance difference. These results sug-
gest that non-experts may be effective at annotating
near duplicates, although further investigation with
more datasets and subjects is needed. We note how-
ever that similar observations were made for estimat-
ing Fitzpatrick skin types with crowd workers (Groh

et al., 2022). In the case of label errors, experts have
an edge over laypersons as expected.

5. Conclusion

This paper outlined the application of a novel effi-
cient data-cleaning protocol for irrelevant samples,
near duplicates, and label errors, which combines
domain-expert confirmation of algorithmically
ranked candidates with an intuitive stopping cri-
terion. The procedure was applied to six popular
public evaluation datasets for digital dermatology
to produce more reliable performance measure-
ments by removing issues universally recognized
by three experts. We removed up to 1.8% of irrel-
evant samples, up to 2.8% of near duplicates, and
estimated label error prevalence in all considered
datasets with a significant speed-up compared
to exhaustive annotation. We found performance
differences up to −1.0% in AUROC, −1.4% in AP,
and −3.6% in AUPRG when evaluating models on
cleaned versions of these already highly curated
datasets. The outlined data-cleaning procedure
demonstrated remarkable effectiveness and robust-
ness, and may be used to improve public and
private datasets including medical atlases inde-
pendently of the domain. Finally, we found hints
that near-duplicate confirmation does not require
domain expertise, which can significantly lower
the cost of curation. Revised file lists are available
at https://github.com/Digital-Dermatology/

SelfClean-Revised-Benchmarks.
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Figure 3: The upper panels show the pair-wise annotator agreement using Cohen’s kappa of each expert-
expert (blue) and expert-lay person pair (orange). The lower panels show the difference in Cohen’s
kappa between every pair of an expert and a layperson with respect to the same reference expert.

By eliminating label errors, irrelevant samples, and
near duplicates, the improved datasets obtain more
realistic performance estimates for clinical decision
support systems. This not only streamlines the di-
agnostic process but also minimizes the risk of mis-
diagnosis, thereby improving patient outcomes. The
impact of the outlined procedure is expected to be
larger on uncurated datasets as they usually contain
more inaccuracies, and no other approach exists than
extensive manual curation.

In future work, we aim to clean larger datasets in-
cluding development and evaluation splits to make
ML more reliable in digital dermatology.
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Appendix A. Limitations

One limitation of the current data-cleaning proto-
col is that the annotation process is influenced by
the rankings produced by SelfClean. Recent works
have found that human annotation quality depends
on the order of the instances shown to the annotators
(Pandey et al., 2022). In its present form, the proce-
dure used in this paper still features a complicated
interplay between the proposed ranking, deviations
from the ranking, and the quality of annotations.
The proposed data-cleaning protocol obtains can-

didate rankings using SelfClean, which relies on SSL
and thus does not inherit annotation biases. These
rankings are then combined with the in-depth do-
main knowledge of multiple human experts to find
data quality issues in existing benchmark datasets.
Although we leverage multiple experts, the confirmed
data quality issues may still be affected by human
subjectivity and biases. However, we mitigate this as
much as possible by requiring unanimous agreement.
Label errors may be difficult to confirm, as atyp-

ical presentations of disease, such as amelanotic
melanomas or pigmented non-melanoma skin cancers,
may be flagged as a label error when the label is in
fact correct. Prior work has shown that even board-
certified dermatologists have difficulty reaching a con-
sensus on difficult cases where pathological confirma-
tion provides a gold-standard label (Daneshjou et al.,
2022, 2023). Labels obtained through procedures such
as biopsies or follow-up consultations should not be
corrected by human image assessment as they rep-
resent a different source of truth. This is one of the
reasons why the proposed protocol only estimates la-
bel error prevalence, leaving further investigation to
the dataset curators.

Appendix B. Illustration of detected
data quality issues

This section illustrates the data quality issues found
in the considered datasets by unanimous expert
agreement. The figures 4, 5, 6, 7, and 8 show up to
seven issues for each dataset, with the exception of
PH2, as it was found not to contain any issues.

Appendix C. Detailed data cleaning
results

This section provides extended performance results
related to dataset cleaning. Figure 9 visualizes the

number of expert-verified samples for each dataset
and error type. Table 4 shows the speed-up factor for
each dataset and noise type when using the proposed
resource-efficient data cleaning protocol as opposed
to exhaustive annotation. Table 3 compares SelfClean
with the expert annotations in tabular form. Figures
10, 11, 12, 13, and 14 illustrate the quality of the
candidate rankings by comparing them with each ex-
pert’s annotations.

Appendix D. Ablation stopping
criteria

Figure 15, 16, 17, 18, and 19 visualize the dependence
of the number of detected samples on the parame-
ters pchance and p+ of the stopping criteria for each
dataset. We see that results are robust to the choice of
parameters as the number of detected issues does not
change significantly when increasing pchance and p+
for most datasets and quality issues. However, there
are a few cases where changing the parameters can
lead to detecting fewer problematic instances, such as
Figure 15(c), 17(c), and 19(a), indicating that some
data quality issues are found after a larger consecu-
tive number of non-problematic samples. In summary
the results show that, when we stop annotation even
earlier, in most cases the number of detected issues
is still insensitive to the change of parameters.
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(a) Irrelevant Samples

(b) Near Duplicates
melanoma naevus

(c) Label Errors

Figure 4: Visualization of the data quality issues found in MED-NODE by unanimous expert agreement, i.e.
3 irrelevant samples, 1 near duplicate, and 2 label errors. Figure 4(a) shows the irrelevant samples,
4(b) the near duplicates, and 4(c) the label errors.
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(a) Irrelevant Samples

(b) Near Duplicates
Malignant: True Malignant: True Malignant: True Malignant: True Malignant: True Malignant: True Malignant: True

(c) Label Errors

Figure 5: Visualization of the data quality issues found in DDI by unanimous expert agreement, i.e. 3
irrelevant samples, 6 near duplicates, and 8 label errors. Figure 5(a) shows the irrelevant samples,
5(b) the near duplicates, and 5(c) the first 7 label errors.
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(a) Irrelevant Samples

(b) Near Duplicates
miscellaneous seborrheic keratosis

(c) Label Errors

Figure 6: Visualization of the data quality issues found in Derm7pt by unanimous expert agreement, i.e. 1
irrelevant sample, 9 near duplicates, and 2 label errors. Figure 6(a) shows the irrelevant samples,
6(b) the first 7 near duplicates, and 6(c) the label errors.
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(a) Irrelevant Samples

(b) Near Duplicates
Basal Cell Carcinoma Nevus Actinic Keratosis

(c) Label Errors

Figure 7: Visualization of the data quality issues found in PAD-UFES-20 by unanimous expert agreement,
i.e. 2 irrelevant samples, 56 near duplicates, and 3 label errors. Figure 7(a) shows the irrelevant
samples, 7(b) the first 7 near duplicates, and 7(c) the label errors.
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(a) Irrelevant Samples

(b) Near Duplicates
Darier-White_Disease Factitial_Dermatitis Milia Junction_Nevus

(c) Label Errors

Figure 8: Visualization of the data quality issues found in SD-128 by unanimous expert agreement, i.e. 3
irrelevant samples, 157 near duplicates, and 4 label errors. Figure 8(a) shows the irrelevant samples,
8(b) the first 7 near duplicates, and 8(c) the label errors.
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Irrelevant Samples Near Duplicates Label Errors
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Figure 9: Number and percentage of expert-confirmed samples before the annotation was terminated by the
stopping criteria for each dataset, expert, and issue type.
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Table 3: Comparison of the SelfClean ranking with the labels obtained by unanimous agreement of all expert
annotators. Note that we only consider samples annotated by all experts. For reference, we include
the proportion of positive samples, also corresponding to the not-informed baseline performing best
in terms of AP. PH2 is not evaluated, as it was found to contain no issues.

Dataset Metadata Pos. Samples (%) AUROC (%) AP (%) AUPRG (%)

MED-NODE Irrelevant Samples 3.3 74.2 37.8 96.6
MED-NODE Near Duplicates 1.5 87.9 11.1 87.9
MED-NODE Label Errors 1.7 74.8 26.7 97.4

DDI Irrelevant Samples 2.8 92.3 50.8 99.5
DDI Near Duplicates 12.2 93.8 85.3 98.9
DDI Label Errors 2.6 73.2 9.3 82.1

Derm7pt Irrelevant Samples 1.8 94.4 25.0 94.4
Derm7pt Near Duplicates 24.3 100.0 100.0 100.0
Derm7pt Label Errors 1.0 32.0 1.1 0.3

PAD-UFES-20 Irrelevant Samples 0.7 99.8 83.3 100.0
PAD-UFES-20 Near Duplicates 24.7 82.9 67.0 86.6
PAD-UFES-20 Label Errors 4.8 67.8 10.2 63.6

SD-128 Irrelevant Samples 1.8 22.0 1.5 0.1
SD-128 Near Duplicates 91.2 74.7 96.6 14.2
SD-128 Label Errors 2.7 54.2 3.9 38.3

Table 4: Speed-up factor of the annotation process with the proposed data cleaning protocol, calculated as
the reciprocal of the fraction of annotated samples for each dataset and noise type. Additionally
the micro and macro-average of each noise type is reported.

Dataset Irrelevant Samples Near Duplicates Label Errors

MED-NODE 1.9 214.4 1.5
PH2 2.6 231.4 2.4
DDI 6.1 4384.5 2.2
Derm7pt 36.8 55 222.5 10.4
PAD-UFES-20 8.2 11 626.7 36.5
SD-128 32.9 92 302.8 38.0

Micro-Average 14.0 32 520.2 12.1
Macro-Average 14.8 27 330.4 15.2
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Figure 10: Comparison between the candidate rankings and expert annotators, as well as their unanimous
agreement for MED-NODE. Performance was measured in terms of AUROC, AP, and AUPRG.
Figure 10(a) shows the comparison for irrelevant samples, 10(b) for near duplicates, and 10(c)
for label errors.
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Figure 11: Comparison between the candidate rankings and expert annotators, as well as their unanimous
agreement for DDI. Performance was measured in terms of AUROC, AP, and AUPRG. Figure
11(a) shows the comparison for irrelevant samples, 11(b) for near duplicates, and 11(c) for label
errors.
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Figure 12: Comparison between the candidate rankings and expert annotators, as well as their unanimous
agreement for Derm7pt. Performance was measured in terms of AUROC, AP, and AUPRG.
Figure 12(a) shows the comparison for irrelevant samples, 12(b) for near duplicates, and 12(c)
for label errors.
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Figure 13: Comparison between the candidate rankings and expert annotators, as well as their unanimous
agreement for PAD-UFES-20. Performance was measured in terms of AUROC, AP, and AUPRG.
Figure 13(a) shows the comparison for irrelevant samples, 13(b) for near duplicates, and 13(c)
for label errors.
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Figure 14: Comparison between the candidate rankings and expert annotators, as well as their unanimous
agreement for SD-128. Performance was measured in terms of AUROC, AP, and AUPRG. Figure
14(a) shows the comparison for irrelevant samples, 14(b) for near duplicates, and 14(c) for label
errors.
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Figure 15: Dependence of the number of detected
data quality issues on the parameters
pchance and p+ of the stopping criteria for
MED-NODE. Both parameters start at
the default value used throughout the pa-
per pchance = p+ = 0.05 and are increased
one at a time to pchance = p+ = 1.0. Fig-
ure 15(a) shows the behavior for irrele-
vant samples, 15(b) for near duplicates,
and 15(c) for label errors.
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(c) Label Errors

Figure 16: Dependence of the number of detected
data quality issues on the parameters
pchance and p+ of the stopping criteria
for DDI. Both parameters start at the
default value used throughout the paper
pchance = p+ = 0.05 and are increased
one at a time to pchance = p+ = 1.0. Fig-
ure 16(a) shows the behavior for irrele-
vant samples, 16(b) for near duplicates,
and 16(c) for label errors.
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Figure 17: Dependence of the number of detected
data quality issues on the parameters
pchance and p+ of the stopping criteria for
Derm7pt. Both parameters start at the
default value used throughout the paper
pchance = p+ = 0.05 and are increased
one at a time to pchance = p+ = 1.0. Fig-
ure 17(a) shows the behavior for irrele-
vant samples, 17(b) for near duplicates,
and 17(c) for label errors.
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Figure 18: Dependence of the number of detected
data quality issues on the parameters
pchance and p+ of the stopping criteria for
PAD-UFES-20. Both parameters start at
the default value used throughout the pa-
per pchance = p+ = 0.05 and are increased
one at a time to pchance = p+ = 1.0. Fig-
ure 18(a) shows the behavior for irrele-
vant samples, 18(b) for near duplicates,
and 18(c) for label errors.
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Figure 19: Dependence of the number of detected
data quality issues on the parameters
pchance and p+ of the stopping criteria
for SD-128. Both parameters start at the
default value used throughout the paper
pchance = p+ = 0.05 and are increased
one at a time to pchance = p+ = 1.0. Fig-
ure 19(a) shows the behavior for irrele-
vant samples, 19(b) for near duplicates,
and 19(c) for label errors.

Appendix E. Details on human
confirmation

Annotators use the same annotation tool as in Gröger
et al. (2023), which is shown in Figure 20. The an-
notation process starts with selecting a dataset and
data quality issue (e.g. the DDI dataset and irrelevant
samples) and then proceeds with binary questions
(listed below) about single images or pairs thereof,
depending on the task. Note that the samples’ ranks
are not displayed to avoid potential bias.

Irrelevant samples: “Your task is to judge if the
image shown is irrelevant. Select yes when the
image is not a valid input for the task at hand.”

Near duplicates: “Your task is to judge whether
the two images shown together are pictures of
the same object. Note that pictures of the same
object can be identical or different shots with the
same object of interest.”

Label errors: “Your task is to judge whether the
image’s label is correct. Please select that the
label is an error only if you think it is wrong and
not when there is low uncertainty or ambiguity.”

Appendix F. Ethics statement

Our research does not require IRB approval because
our study examines publicly available datasets and
does not involve human subjects beyond annotations
from co-authors.

Both medical experts and laypersons were not com-
pensated financially but were instead acknowledged
with co-authorship in a labeling consortium.
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Figure 20: Screenshot of the verification tool from (Gröger et al., 2023) used to confirm data quality issues.
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