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Abstract

Most commonly used benchmark datasets for computer vision contain irrelevant
images, near duplicates, and label errors. Consequently, model performance on
these benchmarks may not be an accurate estimate of generalization ability. This
is a particularly acute concern in computer vision for medicine where datasets
are typically small, stakes are high, and annotation processes are expensive and
error-prone. In this paper, we propose SELFCLEAN, a general procedure to clean up
image datasets exploiting a latent space learned with self-supervision. By relying on
self-supervised learning, our approach focuses on intrinsic properties of the data and
avoids annotation biases. We formulate dataset cleaning as either a set of ranking
problems, where human experts can make decisions with significantly reduced
effort, or a set of scoring problems, where decisions can be fully automated based on
score distributions. We compare SELFCLEAN against other algorithms on common
computer vision benchmarks enhanced with synthetic noise and demonstrate state-
of-the-art performance on detecting irrelevant images, near duplicates, and label
errors. In addition, we apply our method to multiple image datasets and confirm an
improvement in evaluation reliability.

1 Introduction

In traditional machine learning (ML), data cleaning was an essential part of the development process
since minor contaminations in the dataset, such as irrelevant samples, near duplicates, label issues,
and missing values, significantly impacted the model’s performance and robustness [1]. However,
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with the rise of deep learning (DL) and large-scale datasets, data cleaning has become less crucial
as large models have shown to work relatively well even if data quality is limited [2]. Validating
and cleaning large datasets is challenging, especially for high-dimensional data, such as images,
where manual verification is often infeasible. Thus, a lot of research has focussed on learning from
noisy data [3] rather than fixing quality issues, as the overwhelming benefits of large-scale datasets
are believed to exceed the drawback of diminished control. However, the rapid growth of image
collections also comes with a sharp decrease in their quality and consistency especially if collection
involves some degree of automation and thus is inherently prone to various errors [4]. For many
domains, the size of publicly available datasets is still one of the main limiting factors to the progress
of artificial intelligence (AI). In these low-data regimes, the influence and importance of “clean”
data is more critical since even fractional amounts of poor-quality samples can substantially hamper
performance [5]. This is especially important in high-stakes settings such as in the medical domain,
where high-quality data is needed to train robust models and validate their performance. However,
many practitioners rather focus on data quantity as a key performance driver and assume a high
quality collection process by default [6]. Thus, even in sensitive domains such as dermatology, many
existing datasets are known to contain varying noise levels, which can substantially undermine the
progress of learning algorithms [7].

The difficulties in controlling quality traded off against the desire to report comparable results has
led DL practitioners to leverage benchmark datasets despite of their underlying issues. For example,
ten of the most used benchmark datasets in ML were evaluated and found to have an average label
error rate of 3.4% in the evaluation set [8]. Errors in the evaluation and training sets undermine
the framework by which scientific progress is measured. Contamination in evaluation sets corrupts
scores, making it unclear which methods can successfully handle edge cases and obscuring how close
performance is to its theoretical optimum. This is especially relevant since many popular benchmarks
are saturating, i.e. only saw minor relative changes in performance over the last few years [9]. Data
quality issues in training sets hinder optimization and may produce suboptimal results.

The three main types of data quality issues addressed in this paper illustrate these mechanisms well.
Irrelevant samples, i.e. inputs that cannot be used for the task, add noise to evaluation metrics while
slowing down and confusing training. Near duplicates, i.e. multiple views of the same object, produce
arbitrary re-weighting in the evaluation set and reduce variability in the training set. Most importantly,
they introduce potential leaks between training and evaluation sets that can lead to overoptimistic
results. Label errors, i.e. wrongly annotated samples, result in incorrect evaluation and poison the
training process. In the rest of this paper, we use the term “noise” for data quality issues including
these three main categories. Notwithstanding the clear benefits of correcting noisy data, applying
any automatic cleaning procedure on evaluation sets can be problematic. In fact, the model under
evaluation may rely on similar mechanisms to the cleaning approach, invalidating the independence
requirement of a performance estimate. An evaluation that ignores known data leaks is however also
incorrect, leading to a conundrum.

This paper proposes a new method called SELFCLEAN to clean image datasets based on self-
supervised learning (SSL), illustrated in figure 1. We formulate dataset cleaning as a set of ranking
problems, which massively reduces the efforts for manual corrections, or alternatively as a set of
scoring problems, which can be used for fully-automatic decisions based on score distributions. We
apply our approach to well-known benchmark datasets in computer vision and medical imaging, and
discuss implications for reliability of results across these domains. The proposed method enables
practitioners to audit data collections, increase evaluation reliability, and amend the training objective
to potentially improve results. Our work contributes to data-centric ML [10] and aims to restore
confidence in both newly-collected and existing datasets. In summary, our main contributions are:

• A new data cleaning procedure called SELFCLEAN, based on SSL, which can be used to
find irrelevant samples, near-duplicates, and label errors by relying exclusively on inductive
biases and the dataset itself. The procedure additionally yields a domain-specific pre-trained
model that can be used for transfer learning.

• A performance analysis of the proposed cleaning method compared to competitive baselines
in synthetic scenarios and expert validation in natural datasets.

• The application of SELFCLEAN to well-known benchmarks in computer vision, medical
imaging, and dermatology, and open-sourced resources to clean and correct their errors.
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Figure 1: SELFCLEAN first trains a self-supervised encoder on noisy data to obtain latent space
representations for dataset samples. It then detects irrelevant samples with agglomerative clustering,
near duplicates based on pairwise distances, and label errors using the intra-/extra- class distance ratio.

• A practical recommendation to clean development and evaluation splits of benchmark
datasets as a reasonable trade-off to obtain more accurate performance estimates.

SELFCLEAN is a holistic framework based on self-supervised learning to clean multiple dataset errors
in a joint pipeline that focuses on relatively low-data regimes typical for the medical domain.

2 Related work

Data cleaning is a core component of data analytics and a topic of interest in the data management
community [11]. Recently, the data-centric AI initiative also brought it back to the attention of ML
researchers, resulting in the development of various data cleaning tools. For instance, Vailoppilly
et al. [12] proposed an all-in-one “data cleansing” tool based on dimensionality reduction, a DL noise
classifier, and a denoising model. Open-source tools for data cleaning also started to appear, including
CleanLab [13] and CleanVision [14], Lightly [15], and FastDup [16]. Most data cleaning approaches
require dimensionality reduction to work with high-dimensional data such as images. This includes
traditional approaches such as PCA [17] or t-SNE [18], and feature extraction with deep encoders,
which are usually trained on natural image databases such as ImageNet [19]. Notably, in the last few
years, SSL was shown to learn more representative latent spaces compared to supervised training
[20–22]. Furthermore, Cao and Wu [23] demonstrated that SSL could learn meaningful latent spaces
even with small datasets, low resolution, and small architectures. Inspired by these results, we use
SSL as a basis to detect the three main types of data quality issues encountered in practice: irrelevant
samples, near duplicates, and label errors [11]. Since these sub-problems are typically addressed
separately in the literature, we briefly review them in turn.

Classification of irrelevant samples has significant overlaps with outlier detection, which can be
addressed with supervised, unsupervised, and semi-supervised learning and was initially motivated
by data cleansing, i.e. enabling models to fit the data more smoothly [24]. Unsupervised approaches
assume outliers to be located in low-density regions and are based on either reconstruction errors
[25, 26], classification [27], or probabilistic methods [28]. Supervised detectors, which require full
ground truth labels, can identify known outlier types but risk missing unknown ones [29, 30]. Semi-
supervised algorithms can capitalize on partial labels and retain the ability to detect unseen outlier
types. Prominent approaches include training on in-distribution data and detecting anomalies that
deviate from the dataset representation learned during training [31].

Near-duplicate detection is traditionally based on a representation-match strategy [32, 33]. Most
DL approaches follow a similar method, where feature vectors are extracted by a deep network
and utilized as representations for content-based matching [34]. Another possible solution is to use
Siamese neural networks to learn a similarity metric between samples [35]. A more recent approach
was proposed for copy detection, and uses a contrastive self-supervised objective along with entropy
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regularization to promote consistent separation of image descriptions [36]. However, a caveat of this
method is that it relies on a threshold that should be manually adapted for each dataset [37].

The identification of label errors is generally focused on prediction-label agreement via confusion
matrices and proceeds by removing samples with low recognition rate [38] or parts of the minority
classes [39]. There are exceptions, such as recent approaches based on supervised contrastive learning
for label error correction [40, 41]. Another prominent method is confident learning, which identifies
label errors based on noisy data pruning, using probabilistic thresholds to estimate noise and ranking
examples to train with confidence [42].

3 Methodology

Let X = {(xi, li) | i ∈ I} be an image classification dataset with index set I = {1, . . . , N},
where xi ∈ Rh×w×c is the i-th sample with height h, width w and channels c, and li ∈ {1, . . . , L}
the i-th label. The feature extractor f with parameters θ maps a sample xi to the representation
ei = f(xi; θ) ∈ RD where D denotes the latent dimension. The image of X in the latent space is then
E = {ei | i ∈ I}. The weights θ of the feature extractor f are pre-trained on X using self-supervised
learning (SSL). The assumption is that SSL produces meaningful latent spaces by training features to
be invariant to augmentations. Furthermore, it does not suffer from semantic collapse like supervised
learning, which removes any information unnecessary for class assignment [20].

In this work, we consider pre-trained features from SimCLR [43] and DINO [44], which have been
shown to produce meaningful latent spaces [20, 21], but in principle any SSL method can be used.
SimCLR is a popular discriminative SSL approach, that uses a contrastive loss to compare different
views of the same image against other randomly sampled images and their transformations. DINO
instead belongs to the distillation SSL family and trains a student network to match the outputs
of a teacher network on different views of the same image. SELFCLEAN requires pre-training an
encoder with SSL, and accordingly also produces a pre-trained model, which can be used to initialize
learning for downstream tasks after cleaning. In appendix D.1, we compare the performance of the
task-specific SSL pre-trained encoder against general-purpose features.

As SimCLR has feature normalization built into the training objective, it is natural to compare points in
its latent space using cosine similarity sim(u,v) = u⊤v/(||u||2 · ||v||2) and the associated distance
scaled to [0, 1], dist(u,v) = (1− sim(u,v))/2. For DINO we explicitly include L2 normalization
during training and inference making the latent space a unit sphere of dimension D − 1, to facilitate
comparison. In appendix D.2, we present an ablation study of the L2 normalization and investigate
the influence of the distance function.

Irrelevant samples We define samples to be irrelevant when they cannot contribute to the solution
of the task at hand. For example, this could be an image from a different modality or one that does not
contain any object of interest. Our irrelevant sample ranking is induced by agglomerative clustering
with single linkage [45] based on the idea that the later a cluster is incorporated, the more it can be
considered an outlier [46]. The ranking is given by sorting the resulting dendrogram such that, at
each merge, the elements of the cluster with fewer leaves appear first. When a merge occurs among
sub-clusters with the same number of elements, we sort the sub-cluster created at the larger distance
first, and we allow for ties when only leaves are involved. Finally, for the automatic determination of
irrelevant samples, we associate each sample with its rank and also a numeric score, which takes small
values for abnormal instances, compatible with the described ranking. In appendix H, we construct
such a score starting from the idea that merges, which happen at very different distances or between
clusters of very different sizes, should produce large numerical variations.

Near duplicates We define near duplicates as pairs of images that contain two views of the same
object. In this sense, exact duplicates are a special case of near duplicates. We rank potential near
duplicates by sorting each pair of distinct samples (i, j), i ̸= j in ascending order according to the
distance between their representations in the latent space, dist(ei, ej). Thus, the first pair in the
ranking has the smallest cosine distance compared to every other pair in the dataset.

Label errors Label problems subsume, for instance, label errors or ambiguous labels, whereas in
this paper we only consider the former. Label errors are samples annotated with a wrong class label.
We rank potential label errors by sorting samples in ascending order according to their intra-/extra-

4



class distance ratio, also known as N2 score [47]. This is a ratio that, for an anchor point ei, compares
the distances to the nearest representation of a different label m̸=(ei) and the distance to the nearest
representation of the same label m=(ei):

m=(ei) = min
j∈I

[
δlilj · dist(ei, ej)

]
, m̸=(ei) = min

j∈I

[
(1− δlilj ) · dist(ei, ej)

]
, (1)

slabel(ei) =
m2

̸=(ei)

m2
=(ei) +m2

̸=(ei)
, (2)

where δlilj is the indicator function that evaluates to 1 if, and only if, li = lj . The score slabel is bound
between [0, 1] where label errors ought to be scored lower than true labels.

In all three cases, SELFCLEAN leverages the local structure of the embedding space: cluster distances
are computed only using the closest samples during agglomeration for irrelevant samples, near-
duplicates are identified among sample pairs with the smallest distances, and finding label errors only
considers the nearest examples of the same and a different class.

3.1 Operation modes

SELFCLEAN is deliberately built with two operation modes: human-in-the-loop and fully-automated.
In the human-in-the-loop mode, samples are ranked based on the described criteria without specifying
which ones should be actually corrected. The discovery of such candidates is essential as an exhaustive
manual search is infeasible in practice, especially when considering pairwise relationships such as
near duplicates. A human curator can then inspect issue-enriched data subsets, either confirming and
correcting problems or looking for a specific rank threshold that gives the desired balance between
precision and recall.

To perform automatic cleaning, specifying a fraction of data to drop or correct without a detailed
inspection is suboptimal, as sensitivity to this parameter is expected to be very high. In this work,
we make and empirically verify the hypothesis that (pairs of) samples can be scored with functions
based on the embedding space distance, which produce a smooth distribution for clean samples, and
relegate contaminated ones to significantly lower score values. Depending on the contaminated data
distribution, it may then be possible to isolate problematic samples with statistical arguments based
on two robust hyperparameters, namely the contamination rate guess α and the significance level q,
as explained in appendix F.

4 Experimental setup

Datasets We experiment on a total of ten datasets, including three large-scale vision benchmarks
(ImageNet [19], CelebA [48], Food-101N [49, 50]), two general medical datasets of X-rays (CheXpert
[51]) and histopathological images (PatchCamelyon [52, 53]), and five dermatology datasets including
dermatoscopy (HAM10000 [54], ISIC-2019 [54, 55]) and clinical images (Fitzpatrick17k [56], DDI
[57], PAD-UFES-20 [58]). An overview of each dataset is presented in appendix B.

Training details We use a randomly initialized vision transformer (ViT) tiny with a patch size
of 16 × 16 as encoder [59] for all experiments. Additionally, we compare against the same ViT
supervised pre-trained on ImageNet. The latent representation is given by the class token output from
the encoder’s last layer, which has dimension 192 for a ViT tiny. The self-supervised pre-training
follows the introductory papers of the respective methods [43, 44]. All SSL models were pre-trained
for 100 epochs with only minor manual hyperparameter tuning to ensure proper convergence. Since
we also consider small datasets, we increase the strength of augmentations to train with samples
of sufficient variation. Details on hyperparameters can be found in table 9 of the appendix. We
resize images to 224 × 224 pixels and normalize them using the mean and standard deviation of
ImageNet [19]. The implementation is based on PyTorch 1.9 [60], and experiments are performed
on an Nvidia DGX station, which features eight V100 GPUs, each with 32 GB of memory, 512 GB
of system memory, and 40 CPU cores. Code and models for replicating our results can be found at
https://github.com/***/***.
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Table 1: Performance of various models on the detection of synthetic data quality issues. Evaluation
is performed for each of the three considered issue types across two clean benchmark datasets,
DDI and High-Quality Fitzpatrick17k (HQ-FST), augmented with two strategies for 10% synthetic
contamination each (XR, CMED, MED, ARTE, LBL, and LBLC). Consult section 4 for more details.
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DDI + XR DDI + CMED HQ-FST + XR HQ-FST + CMED

Method AUROC (%) AP (%) AUROC (%) AP (%) AUROC (%) AP (%) AUROC (%) AP (%)

IN + IForest 89.5 37.0 89.6 52.3 88.1 37.2 96.3 74.8
IN + HBOS 92.5 46.7 80.7 42.9 84.3 27.3 94.0 69.7

SELFCLEAN (IN) 100.0 100.0 100.0 99.8 99.2 80.3 99.7 96.7
SELFCLEAN (SimCLR) 90.8 32.8 77.8 31.6 95.5 48.1 81.4 26.0
SELFCLEAN (DINO) 100.0 100.0 97.4 89.5 100.0 100.0 98.5 84.1

N
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rD
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at

es

DDI + MED DDI + ARTE HQ-FST + MED HQ-FST + ARTE

Method AUROC (%) AP (%) AUROC (%) AP (%) AUROC (%) AP (%) AUROC (%) AP (%)

pHashing 69.2 9.8 68.9 33.4 71.6 12.5 80.5 30.6
SSIM 85.7 25.7 84.2 35.3 92.6 36.1 88.5 32.9

SELFCLEAN (IN) 96.7 6.0 94.9 29.2 97.8 27.9 93.3 27.2
SELFCLEAN (SimCLR) 96.1 13.7 88.6 37.5 97.4 22.4 87.2 17.3
SELFCLEAN (DINO) 99.6 63.0 99.6 65.4 99.3 61.2 95.3 38.9

L
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or

s

DDI + LBL DDI + LBLC HQ-FST + LBL HQ-FST + LBLC

Method AUROC (%) AP (%) AUROC (%) AP (%) AUROC (%) AP (%) AUROC (%) AP (%)

IN + Confident Learning 71.4 17.8 72.0 23.6 77.0 31.7 83.8 38.6
FastDup 68.6 14.6 71.4 28.8 85.2 32.3 84.7 28.9

SELFCLEAN (IN) 60.3 22.9 43.8 16.7 48.5 10.7 49.1 12.8
SELFCLEAN (SimCLR) 39.6 8.0 42.8 16.0 56.3 17.7 47.2 13.2
SELFCLEAN (DINO) 77.2 26.3 78.7 50.0 85.1 39.7 79.9 35.2

Evaluation metrics Our evaluation relies on ranking metrics as it constitutes the core of SELF-
CLEAN independently of the operation mode. The proposed method and the baselines are therefore
evaluated in terms of AUROC, AP, Recall@k, and Precision@k, following standard practice [61].

Synthetic experiment setup To compare SELFCLEAN against other methods, we create synthetic
datasets by altering clean benchmarks for dermatology and start by considering each of the three data
quality issues separately. Open-source dermatology datasets can be assumed of high quality since their
size is relatively small, and curation often involves multiple experts annotating the full dataset. The
two dermatology datasets, which we assume to be of high-quality, are High-Quality Fitzpatrick17k
(HQ-FST) [56] and DDI [57]. The creation of synthetic datasets is inspired by typical noise present
in the medical domain. For each of the three noise types, we define two distinct contamination
strategies applied to both datasets, resulting in a total of twelve evaluations. These evaluations are
then repeated for different percentages of contamination, i.e. 5% and 10%, mimicking real-world noise
prevalence estimates [62]. For each noise category, we compare against other unsupervised methods
that have performed well on the given task. A detailed description of these baselines can be found
in appendix C. SELFCLEAN employs self-supervised pre-training, carried out on the contaminated
dataset. Specifically, we train a separate model for every noise category, contamination level, and
synthetic contamination strategy.

The first synthetic contamination strategy for irrelevant samples, XR, consists in adding images of
a different modality, in our case lung X-rays of COVID-19 patients [63]. The second strategy for
irrelevant samples, CMED, adds a number of samples from disparate datasets, consisting of surgical
tools [64], X-ray images from arbitrary body parts [63], ImageNet samples [19], histopathological
images [65], segmentation masks [66], and pictures of PowerPoint slides* [67] (see figure 12). Note
that XR produces clustered outliers and CMED more isolated ones. The first contamination stategy
for near-duplicates, called MED, adds samples from the original dataset after augmenting them with
rotation, flipping, resizing, padding, and Gaussian blur (see figure 11a). The second approach for
near-duplicates, ARTE, consists in adding samples from the original dataset after including artifacts
such as watermarks, color bars, and rulers, followed by scaling and composition with other images to
create a collage (see figure 11b). Detailed configurations for MED and ARTE can be found in table
10 of the appendix. For the first contamination strategy to evaluate label errors, named LBL, we take

*Note that such contamination is common because medical datasets are often crawled from existing Power-
Point slide collections.
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Figure 2: Performance of the two best baselines compared to SELFCLEAN measured in terms of AP
for a “mixed-contamination strategy” when varying the contamination rate. The artificial dataset is
created from DDI by adding X-ray images (XR), then injecting augmented duplicates (MED), and
finally changing labels at random (LBL).

a predefined percentage of samples of the original dataset and randomly change their labels, chosen
uniformly from all others. The second, more challenging strategy to evaluate label errors, LBLC,
consists of changing a predefined fraction to a label randomly extracted according to class prevalence
in the original dataset.

Different contamination strategies can be applied sequentially to create a dataset with more chal-
lenging and realistic constellation of artificial data quality issues, resulting in a so-called “mixed-
contamination strategy”. We include such a scenario by choosing the first strategy for each of the
three considered data problems. In order to consider all interactions, we start with adding irrelevant
samples, proceed by creating near duplicates, and finally introduce label errors. Thus, there is the
possibility, for example, that an irrelevant sample is further augmented, resulting in near-duplicates of
an irrelevant sample. To preserve the meaning of the overall contamination rate C, each contamination
in the sequence is added with prevalence CS such that (1 +CS)

S = (1 +C), where S is the number
of contamination steps.

Natural experiment setup To further validate the proposed approach, we evaluate it on data quality
issues naturally found in benchmark datasets. To this end, we devise two different experiments. In the
first experiment, we measure how well the ranking matches available metadata, e.g. if two images
show the same person or if the label was obtained using gold standard tools in medical diagnosis.
This experiment is, however, specific to each dataset depending on the applicability of the available
metadata. Therefore, in a second experiment, we use SELFCLEAN to propose a ranking for some
datasets and gather partial human annotations for validation. We collect annotations from medical
experts for the medical datasets and rely on crowd workers for general image datasets. We then
evaluate the proposed ranking using human annotations as described in appendix G.

5 Results

5.1 Synthetic contamination

Comparison on data quality issues Table 1 shows the results of the best two baseline methods
compared to SELFCLEAN using supervised ImageNet (IN), SimCLR and DINO pre-training. Here
performance is reported for the twelve synthetic datasets based on two dermatology benchmarks
described in section 4 with a contamination rate of 10%; Table 4 in the appendix includes results for
all baselines for both 5% and 10% contamination. SELFCLEAN with DINO pre-training performs
roughly on par or better than the considered baselines for irrelevant-sample, near-duplicate, and label
error detection. Some baselines for irrelevant sample detection perform better on clustered outliers
and worse on isolated outliers or vice versa. In contrast, our method is able to detect both clustered
and isolated ones. SELFCLEAN with supervised ImageNet features performs surprisingly well for
irrelevant sample detection. On the other hand, SimCLR does not seem competitive compared to
the other two pre-training strategies. This could be due to the small dataset size which may not be
sufficient for SimCLR to be effective.
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Influence of contamination rate Figure 2 illustrates the influence of the contamination rate for
SELFCLEAN and the best two baseline models for each contamination category, i.e. IForest and
HBOS for irrelevant samples, SSIM and pHASH for near duplicates, and FastDup and confident
learning for label errors. Wherever appropriate we compare performance using both supervised
ImageNet (IN) and self-supervised DINO features. Central value and error bars are obtained from
training with three different random initializations and synthetic datasets. Note that this experiment is
run on the mixed-contamination dataset. The dataset and augmentation strategies were chosen since
they were challenging, as seen in the artificial evaluation from table 1, and include interaction effects.
Our method outperforms most baselines for the three noise types over various contamination rates.
The difference is apparent for irrelevant samples and near duplicates, where SELFCLEAN scores on
average 84.0% and 19.3% higher in AP than the best baseline for the considered contamination rates.
In the case of label errors, confident learning performs well for lower contamination rates, whereas
FastDup works better for higher ones. SELFCLEAN is a good compromise throughout and results, on
average, in 11.7% higher AP than FastDup.

5.2 Natural contamination

Comparison with metadata For some popular vision benchmarks, the literature provides annota-
tions for label errors. For example Northcutt et al. [8] verified 5,440 samples of ImageNet’s validation
set and Lee et al. [50] 57,608 of Food-101N. Our label error ranking performs relatively poorly
for ImageNet with AUROC = 67.3% and AP = 8.4%, and better for Food-101N where AUROC
= 79.8% and AP = 47.8% indicate that verified label errors are identified well. Additionally, we
evaluate near-duplicate detection against CelebA labels that indicate images of the same celebrity.
Here we achieve an AUROC = 78.8% and AP = 30.9%, which is remarkably high considering that
the model performs facial recognition without supervision. For medical datasets, we first check how
well SELFCLEAN can find pairs of images showing the same lesion. We obtain good results for
HAM10000 and ISIC-2019, with AUROC = 98.7%, AP = 28.4% and AUROC = 98.2%, AP = 26.6%
respectively. On the other hand, for PAD-UFES-20 we only achieve AUROC = 71.0% and AP =
10.0%, which deserves further investigation to determine the mismatch. We also attempt to identify
X-rays from the same patient within CheXpert and find some agreement with AUROC = 70.5%
and AP = 7.5%, suggesting again that a case-by-case analysis should be performed. Furthermore,
we investigate the correspondence between our label error ranking and the labelling method. For
PAD-UFES-20, we consider gold-standard labelling and observe it does not correlate very well with
our label error ranking (AUROC = 57.0%, AP = 61.3%). On the other hand, for the HAM10000
dataset, we observe that the labels obtained from follow-up, which are arguably the most likely to be
correct since the considered nevi did not show any change during three follow-up visits or 1.5 years
[54], are found by SELFCLEAN to be unlikely label errors (AUROC = 90.8%, AP = 86.3%). A table
with results can be found in appendix E.2.

Comparison with human annotators We evaluate SELFCLEAN rankings based on human anno-
tations across two medical and two common vision benchmarks as described in appendix G. The
evaluation reveals that images ranked by SELFCLEAN as the most likely to contain data quality
issues are also identified by human experts as containing data quality issues significantly more often
than random images. As shown in table 8, we find statistically significant differences in nine of
twelve evaluations for comparing the lowest 50 ranked images to a random selection and six of ten
evaluations for comparing images ranked 1-25 to images ranked 26-50. In the second comparison,
we exclude near duplicate evaluations since they only consist of data quality issues leading to no
difference. Each evaluation indicates that the proposed ranking is reasonable and, to a large degree,
coincides with human understanding of these three noise types. Therefore using SELFCLEAN can
increase the efficiency when analyzing and fixing data quality issues.

6 Discussion

Influence of dataset cleaning To better understand the relevance of data cleaning, we examine the
impact of using our method on performance estimates in table 2. We train linear and kNN classifiers
based on our encoder on multiple classification benchmarks and measure the performance difference
in F1 score when cleaning either the evaluation set or both splits. We use the automatic mode of
SELFCLEAN with contamination rate guess α = 0.10 and significance level q = 0.05. For most
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Table 2: Influence of removing samples detected in the automatic cleaning mode with α = 0.10 and
q = 0.05 on downstream tasks. We report macro-averaged F1 scores for linear and kNN classifiers on
DINO features over 100 random training/evaluation splits with 80% and 20% fractions respectively.
We compute paired performance differences before and after cleaning the evaluation set, and before
and after cleaning also the training set. We report the median and the intervals to the 5% (subscript)
and 95% (superscript) percentiles. Additionally, we indicate significance of a paired permutation test
on the difference sign with ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.

Differences Linear Classifier (%) Differences kNN Classifier (%)
Dataset Clean Eval Clean Train Clean Eval Clean Train

DDI +1.0+11.1
−11.2 −0.7+7.7

−10.8 +1.2+1.9
−1.2

∗∗∗ +0.0+1.7
−1.4

∗∗∗

HAM10000 +0.1+3.2
−3.5 −0.1+3.9

−3.6 +0.2+0.5
−0.4

∗∗∗ +0.2+1.3
−0.8

∗∗

Fitzpatrick17k −0.6+2.9
−3.6

∗∗ +0.2+3.3
−3.9

∗ −4.1+1.2
−1.3

∗∗∗ +0.1+2.0
−1.7

Food-101N +0.2+0.6
−0.5

∗∗∗ +0.1+0.6
−0.5

∗∗ +0.1+0.1
−0.1

∗∗∗ +0.1+0.2
−0.2

∗∗∗

ImageNet-1k −0.4+0.6
−0.6

∗∗∗ −0.0+0.9
−0.5 −0.4+0.1

−0.2
∗∗∗ +0.4+0.3

−0.4
∗∗∗

benchmark datasets, cleaning the evaluation set and removing data leaks significantly alters scores.
This is most apparent for datasets involving less curation, e.g. obtained from web crawling. Cleaning
the training set has a significant positive impact for many benchmarks, indicating that noise in the
training set hindered optimization. Detailed results are presented in appendix E.3.

Application to benchmark datasets We now apply the automatic mode of SELFCLEAN to well-
known image benchmark datasets and estimate the prevalence of data quality issues. The contamina-
tion rate guess α = 0.10 and significance level q = 0.05 are conservative choices based on general
noise level estimates and the study in appendix F. For highly-curated datasets involving extensive
manual verification, such as DDI, PAD-UFES-20, HAM10000, CheXpert, and ImageNet-1k, we find
noise levels below 1%. However, for ISIC-2019 and PatchCamelyon, we estimate 5.4% and 3.9%
of near duplicates not accounted for in the metadata. Such errors, especially for highly curated data,
should be addressed to regain confidence in the obtained scores. On the other hand, when considering
datasets involving less manual curation, such as the Fitzpatrick17k, CelebA, and Food-101N, we find
less than 1% of irrelevant samples, approximately 14.8%, 0.4%, and 1.4% near duplicates, and 0.6%,
0.5%, and 0.9% label errors, respectively. The abundance of near duplicates in these benchmarks
can often be traced back to crawled data of different pages using the same illustration or thumbnail
images. Since some datasets, such as Fitzpatrick17k, do not have fixed data splits considering these
near duplicates, most random splits suffer from data leaks. Thus, all models evaluated on these
benchmarks are optimistically biased. Detailed results are in appendix E.4.

Recommended use The conflict between resolving data quality issues and the veto against the
examination of evaluation data, mentioned in the introduction, has no easy resolution. We suggest the
following compromise, which avoids obvious pitfalls, as an improvement to the current situation. To
refine performance estimates for a benchmark dataset, an SSL model can be trained on the training
set. SELFCLEAN can then be used to clean both training and evaluation set, where for the latter
the human-in-the-loop mode is required and label errors should not be considered. The number of
problems found for each set separately and across them for near duplicates should be reported. This
procedure further enables using the SSL pre-trained backbone as starting point for dataset tasks.

Limitations SELFCLEAN hinges on the considered dataset and inherits biases from its intrinsic
composition. For example, given an image collection with a minority group that can be easily
distinguished from the rest, the minority samples could be classified as irrelevant samples. Likewise,
our method does not consider the dataset’s context, so the candidates it provides for correction may
represent desired features (e.g. images of the same patient), and suitability of samples for a specific
task is not assessed. So far we only targeted three noise types and others such as blurred images
or ambiguous labels will be ignored. The current formulation of SELFCLEAN does not scale well
with dataset size, so additional work is required to apply it to large data collections. Finally, the SSL
strategy needs to be adapted for other data modalities, which are outside the scope of this paper.
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7 Conclusion and outlook

This paper proposed a novel data-cleaning strategy called SELFCLEAN, based on self-supervised
learning. Our method can be used to detect irrelevant samples, near duplicates, and label errors either
automatically or in collaboration with humans. We compared our proposal to state-of-the-art methods
across multiple general and medical image benchmarks in both synthetic and natural contamination
settings. Results showed that SELFCLEAN outperformed the considered baselines for synthetic
data quality issues and demonstrated significant performance in natural settings when compared
to metadata and expert annotations. Moreover, applying the cleaning strategy to highly-curated
medical datasets and general vision benchmarks revealed multiple data quality issues. Removing
problematic samples resulted in a significant difference for model scores. By correcting these datasets,
confidence can be regained in reported benchmark performances. In the future, we plan to incorporate
SELFCLEAN in annotation processes for higher data quality, and use it to detect problems during
inference to enhance model robustness.
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A Broader impact

SELFCLEAN is a new data-cleaning procedure that can be applied to any visual data collection. The procedure
relies on SSL and therefore does not inherit annotation bias. Practitioners can choose if they want the cleaning
process to happen fully automatically or with human intervention. Gaining insights into data collections of
unknown quality can lead to the production of more reliable benchmarks and, in turn, results in performance
measurements that are more meaningful and translate better to real-world performance. Moreover, reported
benchmark results can be invalidated if they contain substantial contamination. SELFCLEAN is therefore a
valuable tool to clarify which methods are the most valuable and to steer future research directions, as well as to
accelerate AI applications.

The near-duplicate detection component of our approach could be used for person re-identification and data
de-anonymization, even if it was not designed for this purpose. Although new in peer-reviewed publications and
lacking extensive evaluation for data cleaning to the best of our knowledge, it can already be found in at least
one publicly available tool [15]. We therefore conclude that increased awareness outweighs increased chances of
malignant use.

For all conducted experiments we used about 5400 GPU hours which roughly corresponds to 600kg CO2.

B Datasets

In this study, we selected ten well-known open-source image datasets comprising three general-purpose vi-
sion benchmarks and seven medical datasets. The selection of datasets contains different modalities such as
smartphone, high-resolution, X-ray, histopathology, dermatoscopy, and clinical images. The diversity of the
datasets and domains should illustrate the proposed approach’s versatility. Furthermore, some datasets were
chosen because of their very high quality standards, and their curation involved large amounts of manual
correction including validation by multiple domain experts. These high-quality datasets are mainly used to
evaluate the proposed approach after injecting synthetic noise since they are assumed to be almost free of natural
contamination.

Diverse Dermatology Images (DDI) is a public, deeply-curated, and pathologically-confirmed image dataset
with diverse skin tones [57]. It contains 656 clinical images of 570 unique patients with 78 common and
uncommon diseases originating from pathology reports of the Stanford Clinics.

PAD-UFES-20 is a public benchmark dataset composed of clinical images collected from smartphone devices
including patient clinical data [58]. The dataset comprises 1,373 patients, 1,641 skin lesions, and 2,298 images
for six different diagnoses: three skin diseases and three skin cancers.

HAM10000 is a public benchmark dataset consisting of 10,015 dermatoscopic images collected from different
populations and institutions [54]. The collected cases include a representative sample of seven categories of
pigmented lesions. Images were collected with the approval of the Ethics Review Committee of the University
of Queensland (Protocol-No. 2017001223) and the Medical University of Vienna (Protocol-No. 1804/2017).

Fitzpatrick17k (FST) is a public benchmark dataset containing 16,577 clinical images with skin condition
annotations and skin type labels based on the Fitzpatrick scoring system [56]. The images originate from two
online dermatology atlases and thus are known to contain noise [7]. In this study, we used the middle granularity
level, which partitions the labels into nine disease categories.

High-Quality Fitzpatrick17k (HQ-FST) is a subset of the Fitzpatrick17k dataset used in the paper [56] as
a data quality check. It was obtained by randomly selecting 3% of the images (504 samples) and gathering
annotations by two board-certified dermatologists to evaluate diagnostic accuracy. This subset is assumed to be
of much higher quality than its original, larger counterpart.

ISIC-2019 is a public benchmark dataset of 25,331 dermoscopic images with metadata split into eight diagnostic
categories. Additionally, the test set contains an additional outlier class not represented in the training data. The
images originate from the HAM10000 [54] and the BCN_20000 [55] datasets.

PatchCamelyon consists of 327,680 color image patches extracted from histopathologic scans of lymph node
sections [52] from the Camelyon16 dataset [53]. Each patch is annotated with a binary label indicating the
presence of metastatic tissue. Camelyon16 contains 399 whole-slide images and corresponding glass slides of
sentinel axillary lymph nodes, which were retrospectively sampled from 399 patients who underwent breast
cancer surgery at two hospitals in the Netherlands. All metastases in the slides were annotated under the
supervision of multiple expert pathologists.

CheXpert is a large public dataset for chest radiograph interpretation, consisting of 224,316 X-ray scans from
65,240 patients [51]. The authors retrospectively collected the chest radiographic examinations from Stanford
Hospital, performed between October 2002 and July 2017 in both inpatient and outpatient centers, along with
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their associated radiology reports. Labels were extracted from the free-text radiology reports with an automated
rule-based system. The dataset further contains radiologist-labeled reference evaluation sets.

CelebFaces Attributes Dataset (CelebA) is a large-scale face attributes dataset with more than 200,000 celebrity
images, each with 40 attribute annotations [48]. The images in this dataset cover large pose variations and mixed
backgrounds. With 10,177 identities and 202,599 face images, CelebA includes many diverse samples and
features rich annotations.

Food-101N is an image dataset that contains 310,009 images of food recipes divided into 101 classes [50]. Both
Food-101N and the Food-101 [49] dataset share the same 101 classes. However, Food-101N has a significantly
larger number of images and contains more noise. The pictures were scraped from Google, Bing, Yelp, and
TripAdvisor, and 60,000 of them were manually verified for evaluation. The dataset includes information for
each sample on whether or not it features a label problem.

ImageNet-1k (IN) is a well-known benchmark image database with 1,000 classes [19]. Images were scraped by
querying words from WordNet’s “synonym set” (synsets) on several image search engines. The images were
labeled by Amazon Mechanical Turk workers, who were asked whether each image contained objects of a given
synset.

C Baselines

We selected competitive and popular baseline approaches to detect each of the three data quality issue categories,
i.e. irrelevant samples, near duplicates, and label errors. Some of these baselines require to encode images in a
low-dimensional latent space. For this projection we used a ViT-tiny, the same architecture used for the proposed
methodology, pre-trained on ImageNet or DINO, referred to as “IN + BASE” or “DINO + BASE” respectively,
where BASE is the corresponding baseline. In this section, we briefly summarize each of the baselines used in
this work.

C.1 Baselines for irrelevant samples

Isolation Forest (IForest) isolate observations by randomly selecting a feature and split value between the
minimum and maximum of the selected feature, where the number of splits required to isolate a sample
corresponds to the path length from the root node to the leaf node in a tree [68]. This path length averaged over a
forest of random trees is a measure of normality, where noticeably shorter paths are produced for anomalies.

Histogram-based outlier detection (HBOS) is an efficient unsupervised method that creates a histogram of
the feature vector for each dimension and then calculates a score based on how likely a particular data point is
to fall within the histogram bins for each dimension [69]. The higher the score, the more likely the data point
is an outlier, i.e. a feature vector coming from an anomaly will occupy unlikely bins in one or several of its
dimensions and thus produce a higher anomaly score.

Deep One-Class Classifier with Auto Encoder (DeepSVDD) is a type of neural network for learning useful
data representations in an unsupervised way [27]. DeepSVDD trains a neural network while minimizing the
volume of a hypersphere that encloses the network representations of the data, forcing the network to extract the
common factors of variation. DeepSVDD then detects outliers in the data by calculating the distance from the
center.

Empirical Cumulative Distribution Functions (ECOD) is a parameter-free, highly-interpretable unsupervised
outlier detection algorithm [70]. It estimates an empirical cumulative distribution function (ECDF) for each
variable in the data separately. To generate an outlier score for an observation, it computes the tail probability for
each variable using the univariate ECDFs and multiplies them together. This calculation is done in log space,
accounting for each dimension’s left and right tails.

C.2 Baselines for near duplicates

Perceptual Hash (pHashing) is a type of locality-sensitive hash, which is similar if features of the sample are
similar [71]. It relies on the discrete cosine transform (DCT) for dimensionality reduction and produces hash bits
depending on whether each DCT value is above or below the average value. In this paper, we use pHash with a
hash size of 8.

Structural Similarity Index Measure (SSIM) is a type of similarity measure to compare two images with each
other based on three features, namely luminance, contrast, and structure [72]. Instead of applying SSIM globally,
i.e. all over the image at once, one usually applies the metrics regionally, i.e. in small sections of the image, and
takes the mean overall. This variant of SSIM is often called Mean Structural Similarity Index. In this paper, we
in fact apply SSIM locally to 8x8 windows but still refer to the method as SSIM for simplicity.
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C.3 Baselines for label errors

Confident Learning (CL) is a data-centric approach that focuses on label quality by characterizing and
identifying label errors in datasets based on the principles of pruning noisy data, counting with probabilistic
thresholds to estimate noise, and ranking examples to train with confidence [42]. It builds upon the assumption of
a class-conditional noise process to directly estimate the joint distribution between noisy (given) and uncorrupted
(unknown) labels, resulting in a generalized CL that is provably consistent and experimentally performant. In
this study, we use AdaBoost [73] as a classifier to estimate the probabilities. We did not observe any significant
performance difference when using different classifiers similarly to Northcutt et al. [42].

C.4 Baselines for multiple noise types

FastDup is a powerful free and open-source tool designed to rapidly extract valuable insights from image and
video datasets, aiming to increase the dataset quality and reduce data operations costs at an unparalleled scale
[16]. It can detect and eliminate anomalies and outliers, identify duplicate and near-duplicate images and videos,
and find wrongly-labeled samples.

D Self-supervised encoder

This section presents further investigation of the encoder pre-training and its influence on downstream tasks.

D.1 Performance of pre-trained encoder

Since SELFCLEAN relies on dataset-specific SSL to produce meaningful latent spaces, the learned features
can further be used for transfer learning on the same dataset. In table 3, we consider DINO pre-training, as
performed for SELFCLEAN, on different medical and vision benchmarks, i.e. DDI, HAM10000, Fitzpatrick17k,
Food-101N, and ImageNet-1k. The features obtained are compared to a random and supervised ImageNet
initialized ViT tiny in terms of linear performance on the respective classification task of the datasets, i.e. binary
classification (benign/malignant) for DDI, multi-class classification for HAM10000, Fitzpatrick17k, Food-
101N, and ImageNet-1k. The results show that ImageNet features perform better for the DDI and ImageNet-1k
datasets. This is not unexpected since DDI is relatively small and the representation was obtained specifically for
supervised ImageNet classification. In contrast, for HAM10000, Fitzpatrick17k, and Food-101N, the features
produced by SELFCLEAN are lead to improved results. This indicates a further benefit of using SELFCLEAN,
since the features used for cleaning can be recycled for the considered downstream task where they potentially
improve performance.

Table 3: Macro-averaged test F1 scores for multiple vision benchmarks, obtained with linear classifiers
on top of different pre-trained feature sets. Representations are extracted from a ViT tiny using random
initialization weights as a baseline, transfer learning from supervised ImageNet, and DINO SSL
pre-training as performed by SELFCLEAN. Results are obtained from runs with three different random
seeds, of which we report the average performance and standard error.

Method DDI (%) HAM10000 (%) Fitzpatrick17k (%) Food-101N (%) ImageNet-1k (%)
Random 52.5 ± 1.0 21.9 ± 0.5 28.9 ± 0.2 5.1 ± 0.1 0.8 ± 0.1
IN 63.6 ± 1.1 57.5 ± 0.4 52.3 ± 0.1 39.1 ± 0.1 49.1 ± 0.1
SELFCLEAN 59.2 ± 1.9 65.2 ± 0.4 53.8 ± 0.4 53.9 ± 0.2 34.9 ± 0.1

D.2 Influence of L2-normalization and distance functions

To compare DINO with SimCLR, we included explicit L2 normalization in the latent space during both training
and inference for DINO. A similar explicit L2 normalization for representation layers is also used in theoretical
works on SSL [74], where it was inherited from the neural collapse literature [75]. We investigate the influence
of this L2 normalization on the detection performance for the different dataset quality issues. Figure 3 shows the
performance of SELFCLEAN with and without normalization for the mixed-contamination dataset constructed
in 5.1. The results show that L2 normalization increases robustness of irrelevant samples detection, improves
performance in finding near duplicates, and it has little effect on label error detection. One possible explanation
for the improved performance is that limiting the latent space to the unit hypersphere enforces a more direct
relation between the training objective and the relative distances of encoded samples.

In a second experiment, we examined the influence of the choice of the distance function between cosine and
Euclidean distance. Since the Euclidean and cosine distance on a L2 normalized space are equivalent and
produce the same ranking, we only show the results of different distance functions for the non-normalized latent
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Figure 3: Performance of SELFCLEAN when changing the distance function used for comparison and
removing the L2-normalization. The performance is measured in terms of average precision (AP)
for a “mixed-contamination strategy” when varying the contamination rate. The artificial dataset is
created from DDI by adding X-ray images (XR), then injecting augmented duplicates (MED), and
finally changing labels at random (LBL).

space. Figure 3 shows that performance is almost unaffected by the choice of distance function, and suggests
that normalization does not help by enforcing a specific distance, but rather by constraining the latent space.

D.3 Comparison of self-attention

In this experiment, we qualitatively compare on selected target datasets the last self-attention block of the
encoders trained with DINO and supervised ImageNet classification. This experiment illustrates the difference
between self-supervised training on the target domain and domain-agnostic pre-training. Figure 4 shows the
self-attention masks for a random sample from ImageNet, CheXpert, and Fitzpatrick17k. A clear difference
is visible for the self-attention masks obtained using the two pre-training strategies. For example, the masks
show that encoders pre-trained with self-supervision attend to many more visual features than their supervised
pre-trained counterparts, indicating that self-supervised representations contain more holistic information.
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Figure 4: Visualization of the last self-attention block of the encoder pre-trained with supervision on
ImageNet and with DINO self-supervision on domain-specific datasets, for representative images
of different datasets. The first column shows the input image, the second the focus of the model
computed as the mean self-attention of the last block, the third is an overlay of the first two, and the
fourth shows the four most representative patches.
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E Detailed dataset cleaning results

This section provides extended tables with performance results related to dataset cleaning. More precisely,
section E.1 investigates synthetic contamination detection with different methods, metrics, and noise levels,
expanding on section 5.1. Section E.2 presents in tabular form the comparison of SELFCLEAN with available
metadata as discussed in section 5.2. Section E.3 extends table 2 in section 6 by including information on the
performances used to compute paired differences. Finally, E.4 summarizes the number of data quality issues
found in the considered benchmark datasets using the fully-automatic version of SELFCLEAN.

E.1 Detailed comparison on synthetic data quality issues

Table 4: Performance of various models on the detection of synthetic data quality issues. Evaluation is
performed for each of the three considered issue types across two clean benchmark datasets, DDI and
High-Quality Fitzpatrick17k (HQ-FST), augmented with two strategies for synthetic contamination
each (XR, CMED, MED, ARTE, LBL, and LBLC). All scores are reported in percentages (%), P@k
and R@k indicate precision and recall at k respectively. Please consult section 4 for more details.
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P@20 R@20 AUROC AP P@20 R@20 AUROC AP P@20 R@20 AUROC AP P@20 R@20 AUROC AP

IN + IForest 30.0 18.2 92.3 26.9 55.0 36.7 91.8 53.1 15.0 11.5 81.5 12.8 70.0 53.8 96.3 68.4
IN + HBOS 50.0 30.3 95.4 47.4 50.0 33.3 78.9 35.3 20.0 15.4 86.5 16.9 55.0 42.3 94.3 60.1
IN + DeepSVDD 0.0 0.0 71.3 10.5 10.0 6.7 69.4 11.9 5.0 3.8 85.8 19.2 10.0 7.7 60.6 11.4
IN + ECOD 40.0 24.2 91.5 28.4 70.0 46.7 97.9 68.2 10.0 7.7 79.7 12.1 45.0 34.6 94.3 42.9
FastDup 0.0 0.0 9.7 2.7 60.0 40.0 74.6 45.2 0.0 0.0 7.5 2.7 85.0 65.4 99.2 86.8

SELFCLEAN (IN) 100.0 60.6 100.0 100.0 100.0 66.7 100.0 100.0 80.0 61.5 99.2 70.6 100.0 76.9 99.9 98.8
SELFCLEAN (SimCLR) 65.0 39.4 91.8 49.0 45.0 30.0 73.3 36.8 90.0 69.2 96.0 81.3 40.0 33.3 93.8 42.4
SELFCLEAN (DINO) 100.0 60.6 100.0 100.0 100.0 66.6 98.9 92.8 100.0 76.9 100.0 100.0 85.0 70.8 99.1 83.2
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pHashing 20.0 12.1 65.1 9.3 40.0 24.2 62.7 24.3 5.0 3.8 71.0 1.1 40.0 30.8 80.9 30.5
SSIM 45.0 27.3 85.9 22.1 40.0 24.2 74.6 25.4 35.0 26.9 87.0 24.7 40.0 30.8 81.2 32.9
FastDup 45.0 27.3 70.8 16.9 15.0 9.1 53.7 7.6 15.0 11.5 56.1 3.8 10.0 7.7 44.6 3.4

SELFCLEAN (IN) 20.0 12.1 94.8 7.0 35.0 21.2 91.9 21.7 30.0 23.1 99.1 18.2 40.0 30.8 96.1 29.1
SELFCLEAN (SimCLR) 35.0 21.2 98.5 21.6 30.0 18.2 95.5 18.1 35.0 26.9 95.7 18.5 15.0 11.5 93.6 9.1
SELFCLEAN (DINO) 80.0 48.5 99.8 55.9 95.0 57.6 99.5 71.0 50.0 38.5 99.3 38.2 50.0 38.5 96.7 44.1
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FastDup 15.0 9.1 77.9 12.9 35.0 7.5 73.8 26.3 15.0 11.5 82.8 17.3 25.0 16.7 86.2 22.6

SELFCLEAN (IN) 10.0 6.1 60.4 13.3 20.0 4.3 44.8 13.9 20.0 15.4 53.8 13.5 15.0 9.7 56.6 8.9
SELFCLEAN (SimCLR) 10.0 6.1 50.9 6.9 20.0 4.3 42.8 14.0 25.0 19.2 48.4 13.2 15.0 10.0 46.7 10.5
SELFCLEAN (DINO) 15.0 9.1 72.2 13.6 75.0 16.3 75.4 41.0 30.0 23.1 80.8 20.4 40.0 26.7 86.5 33.4
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E.2 Detailed comparison with metadata

Table 5: Comparison of the SELFCLEAN ranking with metadata from multiple benchmark datasets.
For reference, we include the proportion of positive samples, also corresponding to the not-informed
baseline performing best in terms of AP. Please consult section 5.2 for guidance on interpretation.

Dataset Metadata Positive Samples (%) AUROC (%) AP (%)
PAD-UFES-20 Same Lesion 0.06 71.0 10.0
PAD-UFES-20 Not Biopsied 41.60 57.0 61.3
HAM10000 Same Lesion 0.01 98.8 28.4
HAM10000 Not Follow-Up 63.89 90.8 86.3
ISIC-2019 Same Lesion 0.01 98.2 26.6
CheXpert Same Patient 0.01 70.5 7.5

ImageNet-1k† Verified Label Errors 88.73 67.3 8.4
Food-101N‡ Verified Label Errors 18.51 79.8 47.8
CelebA Same Person 0.02 78.8 30.9

E.3 Detailed influence of dataset cleaning

Table 6: Influence of removing samples detected in the automatic cleaning mode with α = 0.10 and
q = 0.05 on downstram tasks. We report macro-averaged F1 scores for linear and kNN classifiers on
DINO features over 100 random training/evaluation splits with 80% and 20% fractions respectively.
We compute paired performance differences before and after cleaning the evaluation set, and before
and after cleaning also the training set. We report the median and the intervals to the 5% (subscript)
and 95% (superscript) percentiles. Additionally, we indicate significance of a paired permutation test
on the difference sign with ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001.

Linear Classifier
Scores (%) Differences (%)

Dataset Cont + Cont Cont + Clean Clean + Clean Clean Eval Clean Train

DDI 59.2+9.6
−10.2 59.6+12.0

−11.2 58.9+9.0
−9.7 +1.0+11.1

−11.2 −0.7+7.7
−10.8

HAM10000 62.6+4.2
−4.2 63.0+3.3

−4.0 62.8+3.2
−3.8 +0.1+3.2

−3.5 −0.1+3.9
−3.6

Fitzpatrick17k 52.8+2.6
−3.1 52.5+2.5

−4.1 52.6+2.9
−2.8 −0.6+2.9

−3.6
∗∗ +0.2+3.3

−3.9
∗

Food-101N 50.0+0.9
−1.2 50.1+1.1

−1.0 50.4+0.8
−1.2 +0.2+0.6

−0.5
∗∗∗ +0.1+0.6

−0.5
∗∗

ImageNet-1k 42.4+0.7
−0.9 42.0+0.9

−0.9 42.2+0.6
−1.0 −0.4+0.6

−0.6
∗∗∗ −0.0+0.9

−0.5

kNN Classifier
Scores (%) Differences (%)

Cont + Cont Cont + Clean Clean + Clean Clean Eval Clean Train

DDI 58.2+7.7
−8.3 59.2+7.5

−8.3 59.7+7.3
−8.8 +1.2+1.9

−1.2
∗∗∗ +0.0+1.7

−1.4
∗∗∗

HAM10000 58.3+3.4
−4.9 58.3+3.7

−4.7 58.7+3.1
−4.6 +0.2+0.5

−0.4
∗∗∗ +0.2+1.3

−0.8
∗∗

Fitzpatrick17k 60.2+1.8
−1.9 56.1+1.9

−2.2 56.1+2.0
−2.3 −4.1+1.2

−1.3
∗∗∗ +0.1+2.0

−1.7

Food-101N 40.3+0.8
−0.9 40.4+0.7

−1.1 40.5+0.7
−1.1 +0.1+0.1

−0.1
∗∗∗ +0.1+0.2

−0.2
∗∗∗

ImageNet-1k 31.2+0.8
−0.9 30.8+0.9

−0.9 31.1+0.8
−0.9 −0.4+0.1

−0.2
∗∗∗ +0.4+0.3

−0.4
∗∗∗

†Refers to the subset of ImageNet-1k validation set which was verified by Northcutt et al. [8].
‡Refers to the subset of Food-101N set which was verified by Lee et al. [50].
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E.4 Details on the application to benchmark datasets

Table 7: Estimated percentage of data quality issues in multiple vision benchmarks estimated using
SELFCLEAN’s automatic mode with α = 0.10 and q = 0.05. Images marked as originating from the
same person, patient, or lesion were excluded from the near-duplicate count whenever this metadata
was available. See appendix K for examples of the problems which were automatically found.

Estimated Errors
Dataset Irrelevant Samples Near Duplicates Label Errors

DDI 1 (0.2%) 4 (0.6%) 5 (0.8%)
PAD-UFES-20 0 (0.0%) 0 (0.0%) 5 (0.4%)
HAM10000 0 (0.0%) 1 (0.6%) 17 (0.2%)
Fitzpatrick17k 18 (0.1%) 2,446 (14.8%) 103 (0.6%)
ISIC-2019 0 (0.0%) 1,200 (5.4%) 97 (0.4%)

PatchCamelyon 98 (0.3%) 12,845 (3.9%) 589 (0.2%)
CheXpert§ 6 (0.0%) 0 (0.0%) 303 (0.6%)

CelebA 2 (0.0%) 810 (0.4%) 1,033 (0.5%)
Food-101N 310 (0.1%) 4,433 (1.4%) 2,728 (0.9%)
ImageNet-1k¶ 0 (0.0%) 36 (0.1%) 262 (0.5%)

§Refers to the label errors in atelectasis.
¶Refers to the ImageNet-1k validation set, similar to [8].
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F Automatic cleaning

In section 3 we constructed scores which take extreme values for candidate problematic data points. Isolating
data issues using such a score is essentially a one-dimensional anomaly detection problem. Here we construct a
procedure to detect outlier scores which works well in our case, and demonstrate that despite the introduction of
two hyperparameters our results do not depend much on arbitrary choices.

F.1 Automatic cleaning procedure

We start with the intuition that detecting problematic samples is easy if the scores are smoothly distributed for
normal data, but are far from the bulk for data with quality issues. However, all our scores range from 0 to 1
and increasingly extreme issues are simply closer and closer to zero without leaving large gaps on the score
scale. For this reason, we expand the neighborhoods of 0 and 1 using a logit transformation, s̃ = log[s/(1− s)].
The transformed scores s̃ then range over the whole real axis enabling a better separation between normal and
problematic samples.

Since the logit transformation has jacobian |ds̃ / ds | = e−s̃/(1 + e−s̃)2, under broad assumptions we expect
the dominant behavior of the transformed score distribution to drop at least as quickly as a logistic probability
density function for s̃ → ±∞. Note that this is the case even if the original score distribution is not just constant
but presents an integrable power-law singularity for s → 0, 1.

In order to identify the samples which are very unlikely to belong to normal data, we first attempt to isolate a
region on the left tail of the distribution which is not affected by noise. To this end, we introduce a hyperparameter
α, the “contamination rate guess”, which represents a generous estimate of the fraction of dirty data in the dataset.
For data quality issues where a score is associated to each sample, we simply drop the lowest ⌊α1N⌋ scores with
α1 = α, while when a score is associated to a pair of samples, we discard the lowest ⌊α1N(N − 1)/2⌋ scores
with α1 = α2. Indeed, in the case where there are no interactions (e.g., only pairs of near-duplicates) we expect
αN abnormally low scores, but in the worst case interaction scenario (e.g., all views of the very same sample)
we await αN(αN − 1)/2 low out-of-distribution scores, which reduces to the above expression for α1 when
αN ≫ 1. Besides dropping the potentially problematic samples, we also select an upper score bound for the
range of interest, since we aim at reproducing only the smooth left tail of the distribution. Reasonable choices
are values between the lower score cutoff determined by α1 and the median, paying attention that enough data is
included for sufficient robustness to noise. For this reason, we choose the upper score cutoff to be the quantile
corresponding to a fraction of data α2 which is the geometric mean between α1 and 1/2, i.e. α2

2 = α1/2. We
observe that the range produces robust statistical information if the number of samples is sufficiently large and
α ≪ 1/2, where in practice α ≲ 1/4 is already stable.

Following our heuristic argument, we approximate the smooth component of the left tail of the distribution using
a logistic distribution with suitably chosen scale and location parameters, which has probability density function

pdf(s̃;µ, σ) =
1

σ
pdf

( s̃− µ

σ

)
, pdf(ŝ) =

e−ŝ

(1 + e−ŝ)2
. (3)

Given the score cutoffs s̄1 and s̄2 corresponding to the quantiles α1 and α2 of the empirically observed
distribution, the scale σ and location µ can be estimated as

σ =
s̄2 − s̄1

s̄(α2)− s̄(α1)
, µ =

s̄1s̄(α2)− s̄2s̄(α1)

s̄(α2)− s̄(α1)
, s̄(αm) = log

αm

1− αm
for m = 1, 2. (4)

Here s̄(αm) indicates the percentage point function of the logistic distribution, i.e. the inverse of its cumulative
distribution function. Note that the whole estimation procedure for the left tail of the distribution relies exclusively
on quantiles and is therefore naturally robust to outliers.

With an estimate of the smooth score distribution for normal data, we can identify abnormal samples by
requesting that they be very unlikely generated by the same random process. This is achieved by demanding
that the probability of obtaining a score below an outlier cutoff scut be less than a significance level q times the
expected fraction of outliers, which is 2α/(N − 1) in the case of pairs of samples and α otherwise. We set the
hyperparameter q to 0.05 corresponding to a 95% one-sided confidence level and study the influence of this
choice in section F.4. All samples with scores lower than the outlier cutoff will be then classified as problematic.

The value of the procedure described above lies in the fact that, despite requiring several engineering steps and
introducing two additional hyperparameters, it detects a number of outliers which is largely independent of any
reasonable choice for α and q. The remaining parts of appendix F are dedicated to showing that the procedure is
intuitive and assumptions are empirically acceptable (F.2), and to demonstrating that detected outliers exhibit
low sensitivity to the contamination rate guess α (F.3) and to the significance level q (F.4).
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(c) Fitzpatrick17k [56]
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(d) Food-101N [50]

Figure 5: Score histogram (blue) and associated left-tail distribution fit (solid orange) with outlier
cutoff (dashed orange) for all considered noise types and representative datasets. The green shaded
area represents the range [s̄1, s̄2] which is used to determine location and scale of the associated
logistic distribution. The values α = 0.10 and q = 0.05 are used throughout.
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F.2 Automatic cleaning examples

In figure 5 we illustrate the fit to the left tails of distributions for representative datasets, together with the
relevant range used to estimate scale and location, and the position of the outlier cutoff to classify data quality
issues. We observe that the probability density function is a qualitatively good estimate of the density-normalized
histograms in the expected range, i.e. for the smooth component of the histogram’s left tail, within sampling
uncertainties. The fit quality is somewhat lower for irrelevant samples, probably due to the score range which is
all above s̃ = 0. We also carried out experiments with a gaussian functional form for score distribution tails, and
observed only minor changes which resulted in a slightly reduced number of detected problems.

F.3 Influence of the contamination rate guess α

In figure 6 we analyze the sensitivity of the number of detected data quality problems on the contamination rate
guess α, for all noise types and representative datasets analyzed in this paper. In these plots, the significance level
q is fixed to its default value of 0.05. We observe that the fraction of found problems does not depend much on α
over several orders of magnitude, suggesting a sensitivity to this hyperparameter that is approximately vanishing
or at most logarithmic. It is by virtue of this reduced dependence that we can fix α = 0.10 throughout the rest of
the paper, and that fully-automatic cleaning is able to produce stable results with limited prior knowledge of
dataset quality.

F.4 Influence of the significance level q

In figure 7 we report the fraction of detected problematic samples as a function of the significance level q,
for all considered noise types and for representative datasets. We can see that this hyperparameter essentially
determines the number of outliers found, which is monotonically increasing with q. Moreover, the number of
identified issues has, in most cases, a dependence on q which is less than linear. In some cases, especially when
the number of detected outliers is below percent level or q approaches 1, we see more severe sensitivity to the
specific value. This may be because the empirical score distribution changes more abruptly than estimated by the
logistic fit, as happens for irrelevant samples, or because the region immediately below the lower score cutoff
s̄(α1) (which corresponds to q = 1) is densely populated almost by construction. It is however clear that q
regulates how extreme scores need to be for a sample to be considered problematic. A value of q = 10−3 will
only select very apparent data quality issues, q = 1/4 will almost certainly also include a significant fraction of
valid samples, and our choice of q = 0.05 strikes a compromise between precision and recall.
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Figure 6: Dependence of the fraction of detected data quality issues on the contamination rate guess α
for all considered noise types and representative datasets, at a fixed significance level q = 0.05.
The observed behavior is reported in blue. It is outside of the lower margin of the plots when no
problems are found. The green solid line represents a fraction of detected issues which is equal to
the contamination rate guess for reference. The vertical dotted red line indicates the default value
α = 0.10 used in the rest of the paper.
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Figure 7: Impact of the choice of the significance level q on the fraction of detected data quality issues,
across noise types and for representative datasets, for a fixed contamination rate guess α = 0.10. The
observed dependency on q is reported in blue, and it is below the lower margin of the plots when no
problematic samples are found. The diagonal green solid line is just a reference to guide reading, and
the dotted red line indicates the default choice q = 0.05.
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G Validating algorithmic rankings with human experts

In this section, we describe the procedure used to confirm that SELFCLEAN assigns low ranks to problematic
samples and high ranks to normal data, as discussed in the second part of section 5.2. To this end, for each data
quality issue type, we collect human annotations for the first 50 images and for 50 images randomly sampled
from the dataset. Annotators use a custom tool which is shown in figure 8. The annotation process starts with the
selection of a dataset and data quality issue (e.g. the Fitzpatrick17k dataset and irrelevant samples) and then
proceeds with binary questions about single images or pairs thereof depending on the task. Section G.1 shows
the task descriptions for each quality issue. Note that samples ranks are not displayed to avoid potential bias.

We paid crowd workers 0.03 US dollars per annotation for images from ImageNet and Food-101N, which
roughly corresponds to 9 US dollars per hour. Medical experts were not compensated financially but were instead
acknowledged with co-authorship in a labeling consortium.

Figure 8: The verification tool used by the medical experts for annotating the ranking of dataset
quality issues by SELFCLEAN.

G.1 Task descriptions

This section gives detailed information about each task description shown to the annotators:

• Irrelevant samples: You will see one image, and your task is to judge whether the image reflects an
irrelevant sample. We define samples to be irrelevant when they are not expected to be valid inputs in
the context of a specific task.

• Near duplicates: You will see two images, and your task is to judge whether the images reflect a
near-duplicate. We define near-duplicates as pairs of images that contain two views of the same object.
In this sense, exact duplicates are an easy special case of near duplicates.

• Label errors: You will see one image along with the corresponding label, and your task is to judge
whether the label of the image is correct. The goal is to detect mismatches between the label and the
image. Label errors are simply samples annotated with a wrong class label.

G.2 Detailed results

In order to verify that problematic samples tend to appear first in the ranking provided by SELFCLEAN, for
each noise type, we first consider all 100 annotated images and then the first 50 in the ranking only. We conduct
Mann-Whitney U statistical tests to verify that humans are more likely to identify data quality issues in samples
that appear first in the SELFCLEAN ranking. In order to gain more intuitive understanding, we also report the
fraction of samples that were found to be problematic within the first 50 and the 50 random samples, and within
samples ranked 1 through 25 and 26 through 50. Finally, we visualize the distribution of human-confirmed
problems through the ranking by plotting the fraction of confirmed problems in a rolling window of ten ranks in
figure 9.

We observe very good performance for near-duplicate detection throughout the considered datasets. Label-error
identification is very convincing in all cases but for DDI. The different concentration of problems is mostly
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observed between images with low ranking and random samples, while the difference between samples 1-25 and
26-50 is less pronounced. We observe that identifying label errors in a highly-curated dataset such as DDI is
a highly-nontrivial task which might exceed the design of our experiment. Finally, the detection of irrelevant
samples is the task where SELFCLEAN achieves the lowest agreement with human annotators. Nevertheless, our
results still suggest a significant separation of irrelevant samples within the ranking in at least half of the cases.

Table 8: Comparison of the percentage of errors found by experts in the 50 lowest-ranked samples
with 50 random samples, and in samples 1 to 25 with samples 26 through 50. We report the percentage
of errors in each sample and the corresponding p-value of a Mann–Whitney U test, which represents
the probability for the ranking to be unrelated to the position of positive samples.

Percentage of Human-Confirmed Problems
Dataset Data Quality Issue Lowest 1-50 (%) Random Sample (%) p-value Lowest 1-25 (%) Lowest 26-50 (%) p-value

DDI Irrelevant Samples 12 8 0.25 20 4 0.04
DDI Near Duplicates 12 0 0.006 24 0 0.005
DDI Label Errors 22 32 0.86 20 24 0.63

Fitzpatrick17k Irrelevant Samples 14 4 0.04 12 16 0.65
Fitzpatrick17k Near Duplicates 100 0 1.3× 10−23 100 100 undef
Fitzpatrick17k Label Errors 54 12 4.4× 10−6 52 56 0.61

ImageNet Irrelevant Samples 62 48 0.08 56 68 0.80
ImageNet Near Duplicates 92 0 2.1× 10−20 100 84 0.02
ImageNet Label Errors 36 0 1.6× 10−6 48 24 0.04

Food-101N Irrelevant Samples 24 4 0.002 36 12 0.02
Food-101N Near Duplicates 100 0 1.3× 10−23 100 100 undef
Food-101N Label Errors 72 34 7.6× 10−5 80 64 0.61
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(c) ImageNet-1k
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Figure 9: Visualization of the percentage of quality issues found across the first 50 samples in the
SELFCLEAN ranking and in 50 random samples, using a rolling window of size 10. Results are
reported across four datasets and for each noise type.
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H Scoring for irrelevant samples

This section describes how to construct a score based on hierarchical clustering, such that samples with a high
probability of being irrelevant have significantly lower values compared to the bulk of the data. Note that,
although in practice we use single-linkage agglomerative clustering, our heuristic construction can be applied to
any hierarchical clustering and is formulated accordingly.

Hierarchical clustering over a set of leaves {1, . . . , N} is defined by a hierarchy of sets Cn = {C1n, . . . , Cnn}
for n going from N to 1. Without loss of generality, we assume indices of merged sets are always consecutive,
and the other sets do not change their relative order

Cin =


Ci(n+1) if i < in,

Ci(n+1) ∪ C(i+1)(n+1) if i = in,

C(i+1)(n+1) if i > in,

for i = 1, . . . , n and n = 1, . . . , N. (5)

The hierarchy of sets induces a dendrogram, i.e. a tree graph where each cluster is a node connected to its
direct parent and children. Each element of the hierarchy is also associated with a merge distance dn−1 =
d(Cinn, C(in+1)n). To define a ranking, we sort the dendrogram such that |Ci(n+1)| ≤ |C(i+1)(n+1)|, i.e. the
cluster which contains the least leaves comes first, based on the idea that outliers are associated with merges
containing fewer leaves [46]. In case of ties, the cluster created at the largest distance precedes the other.

To produce a scoring for each sample from the dendrogram, natural building blocks are the merge distance,
the sizes of the merged clusters, and their interactions [76]. Accordingly, we define scores by drawing the
dendrogram in a [0, 1]× [0, 1] square where the horizontal axis is one minus the distance and the vertical axis is
the weight win of cluster in which is defined recursively. This graphical construction is illustrated in the right
panel of figure 10. The score of each leaf si is determined as the area under the curve fi(d) where

fi(d) = wjn if dn ≤ d < dn−1 and i ∈ Cjn, n = 1, . . . , N, (6)
with dN = 0 and d0 = 1. For convenience, we define pin = |Cin|/N to be the probability of cluster in and set
w0n = 0 and w11 = 1. To define the weights, we propose a rule which we call leaves and distances (LAD) and
reads

wi(n+1) =


win if i < in,

w(in−1)n + (winn − w(in−1)n)pi(n+1)/pinn if in ≤ i ≤ in + 1,

w(i−1)n if i > in + 1.

(7)

This completes our construction of the scores si for irrelevant samples.

We note that although the formulation given here is limited to the case of binary merges and no ties among
distances, generalization to these cases is straightforward except for resolving how to sort the clusters.
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Figure 10: The left plot shows an example of a dendrogram for hierarchical clustering, and the right
plot an illustration of the LAD scoring. In the left plot, the x-axis shows the ranking of the different
points in brackets and the corresponding identification number. In the right plot, the right side of the
y-axis shows the weights win corresponding to equation 7.
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I Hyperparameters

In this section we specify parameter values used throughout the paper for both pre-training and evaluation.

Table 9 lists the hyperparameters used for pre-training for both DINO and SimCLR. The used parameters are
very similar to the introductory papers of these approaches [43, 44] with the exception that the global crop scale
is larger and there are more local crops, which we have found to be beneficial for smaller datasets (< 20,000).
However, we observed no benefit or harm for larger datasets with these minor hyperparameter changes.

Table 10 lists the configuration for producing near-duplicate images using the MedAugment and ArtefactAugment
strategies. The configuration was chosen to mimic the natural contamination of near duplicates in benchmark
datasets.

Table 9: Hyperparameters used for pre-training using SimCLR and DINO on the dataset to clean.
Here “-” indicates that the respective parameter is not used for the corresponding pre-training strategy.
Parameters not given in this list follow the introductory paper. More detailed information about the
hyperparameters can be found in the open-sourced codebase.

Hyperparameter SimCLR DINO
Batch size 90 64
Epochs 100 100
Optimizer Adam AdamW
Learning rate 0.001 0.0005
Min. learning rate 1e-6 1e-6
Weight decay 0.04 0.04
Weight decay end 0.4 0.4
Warmup epochs 10 10
Momentum teacher - 0.996
Clip grad. 3.0 3.0
Base model ViT tiny ViT tiny
Model embedding dim. 192 192
Model output dim. 128 4096
Model patch size 16 16
Model drop path rate 0.1 0.1
Norm last layer - True
Global crops scale - (0.7, 1.)
Local crops scale - (0.05, 0.4)
Global crops number - 2
Local crops number - 12
Warmup teacher temp. - 0.04
Teacher temp. - 0.04
Warmup teacher temp. epochs - 30
Contrastive temp. 0.5 -

Table 10: Parameter values used for the MedAugment (MED) (10a) and ArtefactAugment (ARTE)
(10b) strategies. More detailed configurations can be found in the open-sourced codebase.

(a) MedAugment (MED)

Hyperparameter MED
Rotation proba. 0.5
Padding proba. 0.5
Blur proba. 0.5
Rotation degree range (0, 180)
Scale range (0.5, 0.9)
Padding 3
Gaussian kernel size 5

(b) ArtefactAugment (ARTE)

Hyperparameter ARTE
Watermark proba. 0.5
Colorbar proba. 0.5
Collage proba. 0.5
Watermark max. scale 0.5
Collage max. scale 0.5
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J Visualization of artificial augmentation strategies

This section visualizes the different synthetic contamination strategies used for the evaluation of 5.1. Figure
11 visualizes both near-duplicate augmentation strategies, namely MedAugment (MED) and ArtefactAugment
(ARTE). Figure 12 shows a random sample of the irrelevant images from the combined medical images (CMED)
strategy added to a dataset for contamination. The gallery further shows some irrelevant X-ray images from the
XR augmentation strategy.

(a) MedAugment (MED)

(b) ArtefactAugment (ARTE)

Figure 11: Random samples of near duplicates produced by synthetic augmentation strategies and
used to evaluate near-duplicate detection. Figure 11a shows examples of the MedAugment strategy
(MED), consisting of random rotation, flipping, resizing, applying padding, and Gaussian blur. Figure
11b shows examples of the ArtefactAugment strategy (ARTE), which consists of adding typical
artifacts found in medical image collections. This includes adding watermarks, color bars, and rulers
and then scaling the image and randomly adding additional images to create a collage. Images one,
two, four, and five show examples of collages.
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Figure 12: A random sample of irrelevant samples from the CMED contamination strategy. The images
originate from multiple datasets, consisting of surgical tools [64], X-ray images [63], ImageNet
samples [19], histopathological images [65], segmentation masks [66] and pictures of PowerPoint
slides [67].
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K Inspection of benchmark datasets

This section contains illustrations of the rankings produced by SELFCLEAN for multiple vision benchmarks,
divided into the three main noise categories of irrelevant samples, near duplicates, and label errors.

K.1 ImageNet-1k

Ranking: 1, Idx: 36382 Ranking: 2, Idx: 33340 Ranking: 3, Idx: 6682 Ranking: 4, Idx: 28489 Ranking: 5, Idx: 15994

Idx: 39847 Idx: 39833 Idx: 35255 Idx: 30231 Idx: 36130

Ranking: 6, Idx: 6666 Ranking: 7, Idx: 27820 Ranking: 8, Idx: 22282 Ranking: 9, Idx: 11745 Ranking: 10, Idx: 11550

Idx: 22238 Idx: 28101 Idx: 23427 Idx: 13865 Idx: 27726

Ranking: 11, Idx: 2610 Ranking: 12, Idx: 18750 Ranking: 13, Idx: 14802 Ranking: 14, Idx: 18 Ranking: 15, Idx: 11062

Idx: 10222 Idx: 28189 Idx: 22152 Idx: 26603 Idx: 42502

Figure 13: Ranking produced by SELFCLEAN for near duplicates in the ImageNet-1k validation set,
of which the top-15 are shown along with the respective rank and index.
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Ranking: 1, Idx: 15010 Ranking: 2, Idx: 5417 Ranking: 3, Idx: 29886 Ranking: 4, Idx: 12426 Ranking: 5, Idx: 28953

Ranking: 6, Idx: 38093 Ranking: 7, Idx: 14249 Ranking: 8, Idx: 35096 Ranking: 9, Idx: 22777 Ranking: 10, Idx: 41469

Ranking: 11, Idx: 10491 Ranking: 12, Idx: 13984 Ranking: 13, Idx: 19961 Ranking: 14, Idx: 32456 Ranking: 15, Idx: 19175

Figure 14: Ranking produced by SELFCLEAN for irrelevant samples in the ImageNet-1k validation
set, of which the top-15 are shown along with the respective rank and index.

Ranking: 1, Idx: 6666
horned viper

Ranking: 2, Idx: 22238
sidewinder

Ranking: 3, Idx: 28489
vine snake

Ranking: 4, Idx: 30231
green snake

Ranking: 5, Idx: 18750
Shih-Tzu

Ranking: 6, Idx: 28189
Japanese spaniel

Ranking: 7, Idx: 4266
laptop

Ranking: 8, Idx: 18146
notebook

Ranking: 9, Idx: 41790
studio couch

Ranking: 10, Idx: 11963
quilt

Ranking: 11, Idx: 41770
sliding door

Ranking: 12, Idx: 24283
terrapin

Ranking: 13, Idx: 33171
box turtle

Ranking: 14, Idx: 17843
iPod

Ranking: 15, Idx: 5522
apron

Figure 15: Ranking produced by SELFCLEAN for label errors in the ImageNet-1k validation set, of
which the top-15 are shown along with the respective rank, index, and original label.
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K.2 CheXpert

Ranking: 1, Idx: 38406 Ranking: 2, Idx: 26799 Ranking: 3, Idx: 10150 Ranking: 4, Idx: 31513 Ranking: 5, Idx: 48465

Ranking: 6, Idx: 4474 Ranking: 7, Idx: 36709 Ranking: 8, Idx: 8947 Ranking: 9, Idx: 3928 Ranking: 10, Idx: 12863

Ranking: 11, Idx: 34063 Ranking: 12, Idx: 16795 Ranking: 13, Idx: 40819 Ranking: 14, Idx: 10421 Ranking: 15, Idx: 47238

Figure 16: Ranking produced by SELFCLEAN for near duplicates in CheXpert, of which the top-15
are shown along with the respective rank and index.
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Ranking: 1, Idx: 13452 Ranking: 2, Idx: 17788 Ranking: 3, Idx: 11851 Ranking: 4, Idx: 50317 Ranking: 5, Idx: 14200

Ranking: 6, Idx: 23742 Ranking: 7, Idx: 33253 Ranking: 8, Idx: 13197 Ranking: 9, Idx: 13022 Ranking: 10, Idx: 62903

Ranking: 11, Idx: 17971 Ranking: 12, Idx: 8307 Ranking: 13, Idx: 62993 Ranking: 14, Idx: 28487 Ranking: 15, Idx: 42162

Figure 17: Ranking produced by SELFCLEAN for irrelevant samples in CheXpert, of which the top-15
are shown along with the respective rank and index.

Ranking: 1, Idx: 19492
Atelectasis: positive

Ranking: 2, Idx: 14200
Atelectasis: positive

Ranking: 3, Idx: 11851
Atelectasis: positive

Ranking: 4, Idx: 23742
Atelectasis: negative

Ranking: 5, Idx: 48397
Atelectasis: not given

Ranking: 6, Idx: 5413
Atelectasis: uncertain

Ranking: 7, Idx: 47256
Atelectasis: uncertain

Ranking: 8, Idx: 37959
Atelectasis: uncertain

Ranking: 9, Idx: 10095
Atelectasis: negative

Ranking: 10, Idx: 3133
Atelectasis: uncertain

Ranking: 11, Idx: 19971
Atelectasis: uncertain

Ranking: 12, Idx: 34821
Atelectasis: positive

Ranking: 13, Idx: 51138
Atelectasis: negative

Ranking: 14, Idx: 10712
Atelectasis: negative

Ranking: 15, Idx: 14021
Atelectasis: uncertain

Figure 18: Ranking produced by SELFCLEAN for atelectasis label errors in CheXpert, of which the
top-15 are shown along with the respective rank, index, and original label.
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K.3 PatchCamelyon

Ranking: 1, Idx: 379 Ranking: 2, Idx: 28645 Ranking: 3, Idx: 17878 Ranking: 4, Idx: 12021 Ranking: 5, Idx: 18030

Ranking: 6, Idx: 12597 Ranking: 7, Idx: 33417 Ranking: 8, Idx: 20026 Ranking: 9, Idx: 35861 Ranking: 10, Idx: 33415

Ranking: 11, Idx: 11128 Ranking: 12, Idx: 27507 Ranking: 13, Idx: 33577 Ranking: 14, Idx: 16944 Ranking: 15, Idx: 26402

Figure 19: Ranking produced by SELFCLEAN for near duplicates in PatchCamelyon, of which the
top-15 are shown along with the respective rank and index.
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Ranking: 1, Idx: 21985 Ranking: 2, Idx: 37452 Ranking: 3, Idx: 46293 Ranking: 4, Idx: 16016 Ranking: 5, Idx: 4909

Ranking: 6, Idx: 16748 Ranking: 7, Idx: 47952 Ranking: 8, Idx: 1181 Ranking: 9, Idx: 24095 Ranking: 10, Idx: 30029

Ranking: 11, Idx: 44873 Ranking: 12, Idx: 48536 Ranking: 13, Idx: 30950 Ranking: 14, Idx: 11296 Ranking: 15, Idx: 49801

Figure 20: Ranking produced by SELFCLEAN for irrelevant samples in PatchCamelyon, of which the
top-15 are shown along with the respective rank and index.

Ranking: 1, Idx: 47169
Tumerous: True

Ranking: 2, Idx: 15128
Tumerous: True

Ranking: 3, Idx: 48675
Tumerous: True

Ranking: 4, Idx: 49132
Tumerous: True

Ranking: 5, Idx: 44917
Tumerous: True

Ranking: 6, Idx: 17293
Tumerous: True

Ranking: 7, Idx: 29859
Tumerous: False

Ranking: 8, Idx: 2227
Tumerous: True

Ranking: 9, Idx: 17226
Tumerous: False

Ranking: 10, Idx: 47374
Tumerous: True

Ranking: 11, Idx: 28356
Tumerous: True

Ranking: 12, Idx: 38150
Tumerous: True

Ranking: 13, Idx: 34633
Tumerous: True

Ranking: 14, Idx: 39421
Tumerous: False

Ranking: 15, Idx: 14471
Tumerous: True

Figure 21: Ranking produced by SELFCLEAN for label errors in PatchCamelyon, of which the top-15
are shown along with the respective rank, index, and original label, i.e. if the patch is tumerous.
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K.4 Fitzpatrick17k

Ranking: 1, Idx: 3074 Ranking: 2, Idx: 14120 Ranking: 3, Idx: 14616 Ranking: 4, Idx: 10322 Ranking: 5, Idx: 1114

Ranking: 6, Idx: 4006 Ranking: 7, Idx: 5507 Ranking: 8, Idx: 1428 Ranking: 9, Idx: 1110 Ranking: 10, Idx: 7860

Ranking: 11, Idx: 11101 Ranking: 12, Idx: 731 Ranking: 13, Idx: 6618 Ranking: 14, Idx: 9321 Ranking: 15, Idx: 7508

Figure 22: Ranking produced by SELFCLEAN for near duplicates in the Fitzpatrick17k, of which the
top-15 are shown along with the respective rank and index.
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Ranking: 1, Idx: 9093 Ranking: 2, Idx: 3474 Ranking: 3, Idx: 15202 Ranking: 4, Idx: 6657 Ranking: 5, Idx: 11908

Ranking: 6, Idx: 6952 Ranking: 7, Idx: 2318 Ranking: 8, Idx: 3825 Ranking: 9, Idx: 3764 Ranking: 10, Idx: 7905

Ranking: 11, Idx: 2226 Ranking: 12, Idx: 10573 Ranking: 13, Idx: 6737 Ranking: 14, Idx: 4458 Ranking: 15, Idx: 6134

Figure 23: Ranking produced by SELFCLEAN for irrelevant samples in the Fitzpatrick17k, of which
the top-15 are shown along with the respective rank and index.

Ranking: 1, Idx: 7573
benign epidermal

Ranking: 2, Idx: 6149
inflammatory

Ranking: 3, Idx: 3733
malignant melanoma

Ranking: 4, Idx: 3014
benign epidermal

Ranking: 5, Idx: 1383
benign dermal

Ranking: 6, Idx: 15896
malignant epidermal

Ranking: 7, Idx: 7769
benign melanocyte

Ranking: 8, Idx: 12499
benign dermal

Ranking: 9, Idx: 4675
inflammatory

Ranking: 10, Idx: 6813
malignant melanoma

Ranking: 11, Idx: 14487
malignant epidermal

Ranking: 12, Idx: 981
benign epidermal

Ranking: 13, Idx: 12170
inflammatory

Ranking: 14, Idx: 13380
malignant epidermal

Ranking: 15, Idx: 10048
benign melanocyte

Figure 24: Ranking produced by SELFCLEAN for label errors in the Fitzpatrick17k, of which the
top-15 are shown along with the respective rank, index, and original label.
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Ranking: 6507, Idx: 2316.0
inflammatory

Idx: 6594.0, Dist: 0.0499
inflammatory

(a) Anonymised Near-Duplicate

Ranking: 5656, Idx: 7448.0
inflammatory

Idx: 8177.0, Dist: 0.0334
inflammatory

(b) Anonymised Near-Duplicate
Ranking: 6834, Idx: 13446.0

inflammatory
Idx: 13907.0, Dist: 0.0557

inflammatory

(c) Extreme Near-Duplicate

Ranking: 5652, Idx: 1780.0
genodermatoses

Idx: 13268.0, Dist: 0.0334
genodermatoses

(d) Extreme Near-Duplicate
Ranking: 6443, Idx: 2934.0

inflammatory
Idx: 15364.0, Dist: 0.0488

inflammatory

(e) Wrong Near-Duplicate

Ranking: 6142, Idx: 5276.0
inflammatory

Idx: 8197.0, Dist: 0.0436
inflammatory

(f) Wrong Near-Duplicate

Figure 25: The figure shows multiple near-duplicates found in the Fitzpatrick17k dataset [56]. Figures
25a and 25b show that SELFCLEAN can find near-duplicates where the images were anonymized.
Further, figures 25c and 25d show extreme cases of near-duplicates where the method found crops
of the same image. Finally, figures 25e and 25f show examples where the near-duplicate detection
failed.
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